Abstract
Bioprinting has emerged in recent years as an attractive method for creating 3-D tissues and organs in the laboratory, and therefore is a promising technology in a number of regenerative medicine applications. It has the potential to (i) create fully functional replacements for damaged tissues in patients, and (ii) rapidly fabricate small-sized human-based tissue models, or organoids, for diagnostics, pathology modeling, and drug development. A number of bioprinting modalities have been explored, including cellular inkjet printing, extrusion-based technologies, soft lithography, and laser-induced forward transfer. Despite the innovation of each of these technologies, successful implementation of bioprinting relies heavily on integration with compatible biomaterials that are responsible for supporting the cellular components during and after biofabrication, and that are compatible with the bioprinting device requirements. In this review, we will evaluate a variety of biomaterials, such as curable synthetic polymers, synthetic gels, and naturally derived hydrogels. Specifically we will describe how they are integrated with the bioprinting technologies above to generate bioprinted constructs with practical application in medicine.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Ahmed, T. A., E. V. Dare, and M. Hincke. Fibrin: a versatile scaffold for tissue engineering applications. Tissue Eng. Part B Rev. 14:199–215, 2008.
Allison, D. D., and K. J. Grande-Allen. Review. Hyaluronan: a powerful tissue engineering tool. Tissue Eng. 12:2131–2140, 2006.
Balzar, M., F. A. Prins, H. A. Bakker, G. J. Fleuren, S. O. Warnaar, and S. V. Litvinov. The structural analysis of adhesions mediated by Ep-CAM. Exp. Cell Res. 246:108–121, 1999.
Barron, J. A., B. R. Ringeisen, H. Kim, B. J. Spargo, and D. B. Chrisey. Application of laser printing to mammalian cells. Thin Solid Films. 453:383–387, 2004.
Bertassoni, L. E., J. C. Cardoso, V. Manoharan, A. L. Cristino, N. S. Bhise, W. A. Araujo, P. Zorlutuna, N. E. Vrana, A. M. Ghaemmaghami, M. R. Dokmeci, and A. Khademhosseini. Direct-write bioprinting of cell-laden methacrylated gelatin hydrogels. Biofabrication. 6:024105, 2014.
Bertassoni, L. E., M. Cecconi, V. Manoharan, M. Nikkhah, J. Hjortnaes, A. L. Cristino, G. Barabaschi, D. Demarchi, M. R. Dokmeci, Y. Yang, and A. Khademhosseini. Hydrogel bioprinted microchannel networks for vascularization of tissue engineering constructs. Lab Chip. 14:2202–2211, 2014.
Billiet, T., M. Vandenhaute, J. Schelfhout, S. Van Vlierberghe, and P. Dubruel. A review of trends and limitations in hydrogel-rapid prototyping for tissue engineering. Biomaterials. 33:6020–6041, 2012.
Bohandy, J., B. Kim, and F. Adrian. Metal deposition from a supported metal film using an excimer laser. J. Appl. Phys. 60:1538, 1986.
Boland, T., V. Mironov, A. Gutowska, E. A. Roth, and R. R. Markwald. Cell and organ printing 2: fusion of cell aggregates in three-dimensional gels. Anat. Rec. A Discov. Mol. Cell Evol. Biol. 272:497–502, 2003.
Boland, T., T. Xu, B. Damon, and X. Cui. Application of inkjet printing to tissue engineering. Biotechnol. J. 1:910–917, 2006.
Brodkey, B. S. Non-Newtonian Phenomena. The Phenomena of Fluid Motions. Reading: Addison-Welsley, 1967.
Catros, S., J. C. Fricain, B. Guillotin, B. Pippenger, R. Bareille, M. Remy, E. Lebraud, B. Desbat, J. Amedee, and F. Guillemot. Laser-assisted bioprinting for creating on-demand patterns of human osteoprogenitor cells and nano-hydroxyapatite. Biofabrication. 3:025001, 2011.
Chrisey, D. B. Materials processing: the power of direct writing. Science. 289:879–881, 2000.
Cohen, J., K. L. Zaleski, G. Nourissat, T. P. Julien, M. A. Randolph, and M. J. Yaremchuk. Survival of porcine mesenchymal stem cells over the alginate recovered cellular method. J. Biomed. Mater. Res. A. 96:93–99, 2011.
Colina, M., P. Serra, J. M. Fernandez-Pradas, L. Sevilla, and J. L. Morenza. DNA deposition through laser induced forward transfer. Biosens. Bioelectron. 20:1638–1642, 2005.
Dainiak, M. B., I. U. Allan, I. N. Savina, L. Cornelio, E. S. James, S. L. James, S. V. Mikhalovsky, H. Jungvid, and I. Y. Galaev. Gelatin-fibrinogen cryogel dermal matrices for wound repair: preparation, optimisation and in vitro study. Biomaterials. 31:67–76, 2010.
Derby, B. Printing and prototyping of tissues and scaffolds. Science. 338:921–926, 2012.
Dinca, V., E. Kasotakis, J. Catherine, A. Mourka, A. Ranella, A. Ovsianikov, B. N. Chichkov, M. Farsari, A. Mitraki, and C. Fotakis. Directed three-dimensional patterning of self-assembled peptide fibrils. Nano Lett. 8:538–543, 2008.
du Moon, G., G. Christ, J. D. Stitzel, A. Atala, and J. J. Yoo. Cyclic mechanical preconditioning improves engineered muscle contraction. Tissue Eng. Part A. 14:473–482, 2008.
Dubsky, M., S. Kubinova, J. Sirc, L. Voska, R. Zajicek, A. Zajicova, P. Lesny, A. Jirkovska, J. Michalek, M. Munzarova, V. Holan, and E. Sykova. Nanofibers prepared by needleless electrospinning technology as scaffolds for wound healing. J. Mater. Sci. Mater. Med. 23:931–941, 2012.
Fedorovich, N. E., J. Alblas, J. R. de Wijn, W. E. Hennink, A. J. Verbout, and W. J. Dhert. Hydrogels as extracellular matrices for skeletal tissue engineering: state-of-the-art and novel application in organ printing. Tissue Eng. 13:1905–1925, 2007.
Ferris, C. J., K. G. Gilmore, and G. G. Wallace. Biofabrication: an overview of the approaches used for printing of living cells. Appl. Microbiol. Biotechnol. 97:4243–4258, 2013.
Fleming, P. A., W. S. Argraves, C. Gentile, A. Neagu, G. Forgacs, and C. J. Drake. Fusion of uniluminal vascular spheroids: a model for assembly of blood vessels. Dev. Dyn. 239:398–406, 2010.
Galus, R., M. Antiszko, and P. Wlodarski. Clinical applications of hyaluronic acid. Pol. Merkur Lekarski. 20:606–608, 2006.
Goldstein, A. S., and G. Christ. Functional tissue engineering requires bioreactor strategies. Tissue Eng. Part A. 15:739–740, 2009.
Gou, M., X. Qu, W. Zhu, M. Xiang, J. Yang, K. Zhang, Y. Wei, and S. Chen. Bio-inspired detoxification using 3D-printed hydrogel nanocomposites. Nat. Commun. 5:3774, 2014.
Gruene, M., A. Deiwick, L. Koch, S. Schlie, C. Unger, N. Hofmann, I. Bernemann, B. Glasmacher, and B. Chichkov. Laser printing of stem cells for biofabrication of scaffold-free autologous grafts. Tissue Eng. Part C 17:79–87, 2010.
Guillotin, B., and F. Guillemot. Cell patterning technologies for organotypic tissue fabrication. Trends Biotechnol. 29:183–190, 2011.
Guillotin, B., A. Souquet, S. Catros, M. Duocastella, B. Pippenger, S. Bellance, R. Bareille, M. Remy, L. Bordenave, J. Amedee, and F. Guillemot. Laser assisted bioprinting of engineered tissue with high cell density and microscale organization. Biomaterials. 31:7250–7256, 2010.
Hahn, M. S., M. K. McHale, E. Wang, R. H. Schmedlen, and J. L. West. Physiologic pulsatile flow bioreactor conditioning of poly(ethylene glycol)-based tissue engineered vascular grafts. Ann. Biomed. Eng. 35:190–200, 2007.
Hesse, E., T. E. Hefferan, J. E. Tarara, C. Haasper, R. Meller, C. Krettek, L. Lu, and M. J. Yaszemski. Collagen type I hydrogel allows migration, proliferation, and osteogenic differentiation of rat bone marrow stromal cells. J. Biomed. Mater. Res. A. 94:442–449, 2010.
Hopp, B., T. Smausz, N. Kresz, N. Barna, Z. Bor, L. Kolozsvari, D. B. Chrisey, A. Szabo, and A. Nogradi. Survival and proliferative ability of various living cell types after laser-induced forward transfer. Tissue Eng. 11:1817–1823, 2005.
Howarth, A. G., and B. R. Stevenson. Molecular environment of ZO-1 in epithelial and non-epithelial cells. Cell Motil. Cytoskelet. 31:323–332, 1995.
Hribar, K. C., P. Soman, J. Warner, P. Chung, and S. Chen. Light-assisted direct-write of 3D functional biomaterials. Lab. Chip. 14:268–275, 2014.
Iwami, K., T. Noda, K. Ishida, K. Morishima, M. Nakamura, and N. Umeda. Bio rapid prototyping by extruding/aspirating/refilling thermoreversible hydrogel. Biofabrication. 2:014108, 2010.
Jakab, K., B. Damon, F. Marga, O. Doaga, V. Mironov, I. Kosztin, R. Markwald, and G. Forgacs. Relating cell and tissue mechanics: implications and applications. Dev. Dyn. 237:2438–2449, 2008.
Jakab, K., A. Neagu, V. Mironov, R. R. Markwald, and G. Forgacs. Engineering biological structures of prescribed shape using self-assembling multicellular systems. Proc. Natl. Acad. Sci. USA. 101:2864–2869, 2004.
Jakab, K., C. Norotte, B. Damon, F. Marga, A. Neagu, C. L. Besch-Williford, A. Kachurin, K. H. Church, H. Park, V. Mironov, R. Markwald, G. Vunjak-Novakovic, and G. Forgacs. Tissue engineering by self-assembly of cells printed into topologically defined structures. Tissue Eng. Part A. 14:413–421, 2008.
Jia, J., D. J. Richards, S. Pollard, Y. Tan, J. Rodriguez, R. P. Visconti, T. C. Trusk, M. J. Yost, H. Yao, R. R. Markwald, and Y. Mei. Engineering alginate as bioink for bioprinting. Acta Biomater. 10:4323–4331, 2014.
Kanda, N., N. Morimoto, A. A. Ayvazyan, S. Takemoto, K. Kawai, Y. Nakamura, Y. Sakamoto, T. Taira, and S. Suzuki. Evaluation of a novel collagen-gelatin scaffold for achieving the sustained release of basic fibroblast growth factor in a diabetic mouse model. J. Tissue Eng. Regen. Med. 8:29–40, 2014.
Kirker, K. R., Y. Luo, S. E. Morris, J. Shelby, and G. D. Prestwich. Glycosaminoglycan hydrogels as supplemental wound dressings for donor sites. J. Burn. Care Rehabil. 25:276–286, 2004.
Knudson, C. B., and W. Knudson. Cartilage proteoglycans. Semin. Cell Dev. Biol. 12:69–78, 2001.
Koch, L., S. Kuhn, H. Sorg, M. Gruene, S. Schlie, R. Gaebel, B. Polchow, K. Reimers, S. Stoelting, N. Ma, P. M. Vogt, G. Steinhoff, and B. Chichkov. Laser printing of skin cells and human stem cells. Tissue Eng. Part C 16:847–854, 2010.
Lee, S. J., J. Liu, S. H. Oh, S. Soker, A. Atala, and J. J. Yoo. Development of a composite vascular scaffolding system that withstands physiological vascular conditions. Biomaterials. 29:2891–2898, 2008.
Li, C., P. Chen, Y. Shao, X. Zhou, Y. Wu, Z. Yang, Z. Li, T. Weil, and D. Liu. A writable polypeptide-DNA hydrogel with rationally designed multi-modification sites. Small, 2014. doi:10.1002/smll.201401906.
Li, J., X. Li, X. Ni, X. Wang, H. Li, and K. W. Leong. Self-assembled supramolecular hydrogels formed by biodegradable PEO-PHB-PEO triblock copolymers and alpha-cyclodextrin for controlled drug delivery. Biomaterials. 27:4132–4140, 2006.
Lin, H., D. Zhang, P. G. Alexander, G. Yang, J. Tan, A. W. Cheng, and R. S. Tuan. Application of visible light-based projection stereolithography for live cell-scaffold fabrication with designed architecture. Biomaterials. 34:331–339, 2013.
Liu, Y., X. Z. Shu, and G. D. Prestwich. Tumor engineering: orthotopic cancer models in mice using cell-loaded, injectable, cross-linked hyaluronan-derived hydrogels. Tissue Eng. 13:1091–1101, 2007.
Machingal, M. A., B. T. Corona, T. J. Walters, V. Kesireddy, C. N. Koval, A. Dannahower, W. Zhao, J. J. Yoo, and G. J. Christ. A tissue-engineered muscle repair construct for functional restoration of an irrecoverable muscle injury in a murine model. Tissue Eng. Part A. 17:2291–2303, 2011.
Marga, F., K. Jakab, C. Khatiwala, B. Shepherd, S. Dorfman, B. Hubbard, S. Colbert, and F. Gabor. Toward engineering functional organ modules by additive manufacturing. Biofabrication. 4:022001, 2012.
Matsuura, K., R. Utoh, K. Nagase, and T. Okano. Cell sheet approach for tissue engineering and regenerative medicine. J. Control Release. 190C:228–239, 2014.
Miki, D., K. Dastgheib, T. Kim, A. Pfister-Serres, K. A. Smeds, M. Inoue, D. L. Hatchell, and M. W. Grinstaff. A photopolymerized sealant for corneal lacerations. Cornea. 21:393–399, 2002.
Mironov, V., T. Boland, T. Trusk, G. Forgacs, and R. R. Markwald. Organ printing: computer-aided jet-based 3D tissue engineering. Trends Biotechnol. 21:157–161, 2003.
Mironov, V., V. Kasyanov, C. Drake, and R. R. Markwald. Organ printing: promises and challenges. Regen. Med. 3:93–103, 2008.
Mironov, V., V. Kasyanov, K. McAllister, S. Oliver, J. Sistino, and R. Markwald. Perfusion bioreactor for vascular tissue engineering with capacities for longitudinal stretch. J. Craniofac. Surg. 14:340–347, 2003.
Mironov, V., G. Prestwich, and G. Forgacs. Bioprinting living structures. J. Mater. Chem. 17:2054–2060, 2007.
Mironov, V., N. Reis, and B. Derby. Review: bioprinting: a beginning. Tissue Eng. 12:631–634, 2006.
Mironov, V., R. P. Visconti, V. Kasyanov, G. Forgacs, C. J. Drake, and R. R. Markwald. Organ printing: tissue spheroids as building blocks. Biomaterials. 30:2164–2174, 2009.
Moon, S., S. K. Hasan, Y. S. Song, F. Xu, H. O. Keles, F. Manzur, S. Mikkilineni, J. W. Hong, J. Nagatomi, E. Haeggstrom, A. Khademhosseini, and U. Demirci. Layer by layer three-dimensional tissue epitaxy by cell-laden hydrogel droplets. Tissue Eng. Part C Methods. 16:157–166, 2010.
Muller, M., J. Becher, M. Schnabelrauch, and M. Zenobi-Wong. Printing thermoresponsive reverse molds for the creation of patterned two-component hydrogels for 3D cell culture. J. Vis. Exp. 77:e50632, 2013.
Murphy, S. V., and A. Atala. 3D bioprinting of tissues and organs. Nat. Biotechnol. 32:773–785, 2014.
Murphy, S. V., A. Skardal, and A. Atala. Evaluation of hydrogels for bio-printing applications. J. Biomed. Mater. Res. A. 101:272–284, 2013.
Nair, K., M. Gandhi, S. Khalil, K. C. Yan, M. Marcolongo, K. Barbee, and W. Sun. Characterization of cell viability during bioprinting processes. Biotechnol. J. 4:1168–1177, 2009.
Nakamura, M., S. Iwanaga, C. Henmi, K. Arai, and Y. Nishiyama. Biomatrices and biomaterials for future developments of bioprinting and biofabrication. Biofabrication. 2:014110, 2010.
Norotte, C., F. S. Marga, L. E. Niklason, and G. Forgacs. Scaffold-free vascular tissue engineering using bioprinting. Biomaterials. 30:5910–5917, 2009.
Opara, E. C., S. H. Mirmalek-Sani, O. Khanna, M. L. Moya, and E. M. Brey. Design of a bioartificial pancreas(+). J. Investig. Med. 58:831–837, 2010.
Parisi-Amon, A., W. Mulyasasmita, C. Chung, and S. C. Heilshorn. Protein-engineered injectable hydrogel to improve retention of transplanted adipose-derived stem cells. Adv. Healthc. Mater. 2:428–432, 2013.
Pescosolido, L., W. Schuurman, J. Malda, P. Matricardi, F. Alhaique, T. Coviello, P. R. van Weeren, W. J. Dhert, W. E. Hennink, and T. Vermonden. Hyaluronic acid and dextran-based semi-IPN hydrogels as biomaterials for bioprinting. Biomacromolecules. 12:1831–1838, 2011.
Prestwich, G. D. Evaluating drug efficacy and toxicology in three dimensions: using synthetic extracellular matrices in drug discovery. Acc. Chem. Res. 41:139–148, 2008.
Prestwich, G. D., and J. W. Kuo. Chemically-modified HA for therapy and regenerative medicine. Curr. Pharm. Biotechnol. 9:242–245, 2008.
Rashid, S. T., B. Fuller, G. Hamilton, and A. M. Seifalian. Tissue engineering of a hybrid bypass graft for coronary and lower limb bypass surgery. FASEB J. 22:2084–2089, 2008.
Roth, E. A., T. Xu, M. Das, C. Gregory, J. J. Hickman, and T. Boland. Inkjet printing for high-throughput cell patterning. Biomaterials. 25:3707–3715, 2004.
Santos, E., J. Zarate, G. Orive, R. M. Hernandez, and J. L. Pedraz. Biomaterials in cell microencapsulation. Adv. Exp. Med. Biol. 670:5–21, 2010.
Scanlon, C. S., E. A. Van Tubergen, R. C. Inglehart, and N. J. D’Silva. Biomarkers of epithelial-mesenchymal transition in squamous cell carcinoma. J. Dent. Res. 92:114–121, 2013.
Schiavinato, A., M. Finesso, R. Cortivo, and G. Abatangelo. Comparison of the effects of intra-articular injections of Hyaluronan and its chemically cross-linked derivative (Hylan G-F20) in normal rabbit knee joints. Clin. Exp. Rheumatol. 20:445–454, 2002.
Skardal, A., D. Mack, E. Kapetanovic, A. Atala, J. D. Jackson, J. J. Yoo, and S. Soker. Bioprinted amniotic fluid-derived stem cells accelerate healing of large skin wounds. Stem Cells Transl. Med. 1:792–802, 2012.
Skardal, A., L. Smith, S. Bharadwaj, A. Atala, S. Soker, and Y. Zhang. Tissue specific synthetic ECM hydrogels for 3-D in vitro maintenance of hepatocyte function. Biomaterials. 33:4565–4575, 2012.
Skardal, A., J. Zhang, L. McCoard, S. Oottamasathien, and G. D. Prestwich. Dynamically crosslinked gold nanoparticle—hyaluronan hydrogels. Adv. Mater. 22:4736–4740, 2010.
Skardal, A., J. Zhang, L. McCoard, X. Xu, S. Oottamasathien, and G. D. Prestwich. Photocrosslinkable hyaluronan-gelatin hydrogels for two-step bioprinting. Tissue Eng. Part A. 16:2675–2685, 2010.
Skardal, A., J. Zhang, and G. D. Prestwich. Bioprinting vessel-like constructs using hyaluronan hydrogels crosslinked with tetrahedral polyethylene glycol tetracrylates. Biomaterials. 31:6173–6181, 2010.
Soman, P., P. H. Chung, A. P. Zhang, and S. Chen. Digital microfabrication of user-defined 3D microstructures in cell-laden hydrogels. Biotechnol. Bioeng. 110:3038–3047, 2013.
Visconti, R. P., V. Kasyanov, C. Gentile, J. Zhang, R. R. Markwald, and V. Mironov. Towards organ printing: engineering an intra-organ branched vascular tree. Expert. Opin. Biol. Ther. 10:409–420, 2010.
Williams, D. F. On the nature of biomaterials. Biomaterials. 30:5897–5909, 2009.
Williams, D. The continuing evolution of biomaterials. Biomaterials. 32:1–2, 2011.
Wust, S., M. E. Godla, R. Muller, and S. Hofmann. Tunable hydrogel composite with two-step processing in combination with innovative hardware upgrade for cell-based three-dimensional bioprinting. Acta Biomater. 10:630–640, 2014.
Xu, T., K. W. Binder, M. Z. Albanna, D. Dice, W. Zhao, J. J. Yoo, and A. Atala. Hybrid printing of mechanically and biologically improved constructs for cartilage tissue engineering applications. Biofabrication. 5:015001, 2013.
Xu, K., D. A. Cantu, Y. Fu, J. Kim, X. Zheng, P. Hematti, and W. J. Kao. Thiol-ene Michael-type formation of gelatin/poly(ethylene glycol) biomatrices for three-dimensional mesenchymal stromal/stem cell administration to cutaneous wounds. Acta Biomater. 9:8802–8814, 2013.
Zawaneh, P. N., S. P. Singh, R. F. Padera, P. W. Henderson, J. A. Spector, and D. Putnam. Design of an injectable synthetic and biodegradable surgical biomaterial. Proc. Natl. Acad. Sci. USA. 107:11014–11019, 2010.
Zhang, A. P., X. Qu, P. Soman, K. C. Hribar, J. W. Lee, S. Chen, and S. He. Rapid fabrication of complex 3D extracellular microenvironments by dynamic optical projection stereolithography. Adv. Mater. 24:4266–4270, 2012.
Zhang, C., X. Wen, N. R. Vyavahare, and T. Boland. Synthesis and characterization of biodegradable elastomeric polyurethane scaffolds fabricated by the inkjet technique. Biomaterials. 29:3781–3791, 2008.
Author information
Authors and Affiliations
Corresponding authors
Additional information
Associate Editor Rosemarie Hunziker oversaw the review of this article.
Rights and permissions
About this article
Cite this article
Skardal, A., Atala, A. Biomaterials for Integration with 3-D Bioprinting. Ann Biomed Eng 43, 730–746 (2015). https://doi.org/10.1007/s10439-014-1207-1
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10439-014-1207-1