Skip to main content

Advertisement

Log in

Biomaterials for Integration with 3-D Bioprinting

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Bioprinting has emerged in recent years as an attractive method for creating 3-D tissues and organs in the laboratory, and therefore is a promising technology in a number of regenerative medicine applications. It has the potential to (i) create fully functional replacements for damaged tissues in patients, and (ii) rapidly fabricate small-sized human-based tissue models, or organoids, for diagnostics, pathology modeling, and drug development. A number of bioprinting modalities have been explored, including cellular inkjet printing, extrusion-based technologies, soft lithography, and laser-induced forward transfer. Despite the innovation of each of these technologies, successful implementation of bioprinting relies heavily on integration with compatible biomaterials that are responsible for supporting the cellular components during and after biofabrication, and that are compatible with the bioprinting device requirements. In this review, we will evaluate a variety of biomaterials, such as curable synthetic polymers, synthetic gels, and naturally derived hydrogels. Specifically we will describe how they are integrated with the bioprinting technologies above to generate bioprinted constructs with practical application in medicine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Ahmed, T. A., E. V. Dare, and M. Hincke. Fibrin: a versatile scaffold for tissue engineering applications. Tissue Eng. Part B Rev. 14:199–215, 2008.

    Article  CAS  PubMed  Google Scholar 

  2. Allison, D. D., and K. J. Grande-Allen. Review. Hyaluronan: a powerful tissue engineering tool. Tissue Eng. 12:2131–2140, 2006.

    Article  CAS  PubMed  Google Scholar 

  3. Balzar, M., F. A. Prins, H. A. Bakker, G. J. Fleuren, S. O. Warnaar, and S. V. Litvinov. The structural analysis of adhesions mediated by Ep-CAM. Exp. Cell Res. 246:108–121, 1999.

    Article  CAS  PubMed  Google Scholar 

  4. Barron, J. A., B. R. Ringeisen, H. Kim, B. J. Spargo, and D. B. Chrisey. Application of laser printing to mammalian cells. Thin Solid Films. 453:383–387, 2004.

    Article  Google Scholar 

  5. Bertassoni, L. E., J. C. Cardoso, V. Manoharan, A. L. Cristino, N. S. Bhise, W. A. Araujo, P. Zorlutuna, N. E. Vrana, A. M. Ghaemmaghami, M. R. Dokmeci, and A. Khademhosseini. Direct-write bioprinting of cell-laden methacrylated gelatin hydrogels. Biofabrication. 6:024105, 2014.

    Article  PubMed  Google Scholar 

  6. Bertassoni, L. E., M. Cecconi, V. Manoharan, M. Nikkhah, J. Hjortnaes, A. L. Cristino, G. Barabaschi, D. Demarchi, M. R. Dokmeci, Y. Yang, and A. Khademhosseini. Hydrogel bioprinted microchannel networks for vascularization of tissue engineering constructs. Lab Chip. 14:2202–2211, 2014.

    Article  CAS  PubMed  Google Scholar 

  7. Billiet, T., M. Vandenhaute, J. Schelfhout, S. Van Vlierberghe, and P. Dubruel. A review of trends and limitations in hydrogel-rapid prototyping for tissue engineering. Biomaterials. 33:6020–6041, 2012.

    Article  CAS  PubMed  Google Scholar 

  8. Bohandy, J., B. Kim, and F. Adrian. Metal deposition from a supported metal film using an excimer laser. J. Appl. Phys. 60:1538, 1986.

    Article  CAS  Google Scholar 

  9. Boland, T., V. Mironov, A. Gutowska, E. A. Roth, and R. R. Markwald. Cell and organ printing 2: fusion of cell aggregates in three-dimensional gels. Anat. Rec. A Discov. Mol. Cell Evol. Biol. 272:497–502, 2003.

    Article  PubMed  Google Scholar 

  10. Boland, T., T. Xu, B. Damon, and X. Cui. Application of inkjet printing to tissue engineering. Biotechnol. J. 1:910–917, 2006.

    Article  CAS  PubMed  Google Scholar 

  11. Brodkey, B. S. Non-Newtonian Phenomena. The Phenomena of Fluid Motions. Reading: Addison-Welsley, 1967.

    Google Scholar 

  12. Catros, S., J. C. Fricain, B. Guillotin, B. Pippenger, R. Bareille, M. Remy, E. Lebraud, B. Desbat, J. Amedee, and F. Guillemot. Laser-assisted bioprinting for creating on-demand patterns of human osteoprogenitor cells and nano-hydroxyapatite. Biofabrication. 3:025001, 2011.

    Article  PubMed  Google Scholar 

  13. Chrisey, D. B. Materials processing: the power of direct writing. Science. 289:879–881, 2000.

    Article  CAS  PubMed  Google Scholar 

  14. Cohen, J., K. L. Zaleski, G. Nourissat, T. P. Julien, M. A. Randolph, and M. J. Yaremchuk. Survival of porcine mesenchymal stem cells over the alginate recovered cellular method. J. Biomed. Mater. Res. A. 96:93–99, 2011.

    Article  PubMed  Google Scholar 

  15. Colina, M., P. Serra, J. M. Fernandez-Pradas, L. Sevilla, and J. L. Morenza. DNA deposition through laser induced forward transfer. Biosens. Bioelectron. 20:1638–1642, 2005.

    Article  CAS  PubMed  Google Scholar 

  16. Dainiak, M. B., I. U. Allan, I. N. Savina, L. Cornelio, E. S. James, S. L. James, S. V. Mikhalovsky, H. Jungvid, and I. Y. Galaev. Gelatin-fibrinogen cryogel dermal matrices for wound repair: preparation, optimisation and in vitro study. Biomaterials. 31:67–76, 2010.

    Article  CAS  PubMed  Google Scholar 

  17. Derby, B. Printing and prototyping of tissues and scaffolds. Science. 338:921–926, 2012.

    Article  CAS  PubMed  Google Scholar 

  18. Dinca, V., E. Kasotakis, J. Catherine, A. Mourka, A. Ranella, A. Ovsianikov, B. N. Chichkov, M. Farsari, A. Mitraki, and C. Fotakis. Directed three-dimensional patterning of self-assembled peptide fibrils. Nano Lett. 8:538–543, 2008.

    Article  CAS  PubMed  Google Scholar 

  19. du Moon, G., G. Christ, J. D. Stitzel, A. Atala, and J. J. Yoo. Cyclic mechanical preconditioning improves engineered muscle contraction. Tissue Eng. Part A. 14:473–482, 2008.

    Article  CAS  Google Scholar 

  20. Dubsky, M., S. Kubinova, J. Sirc, L. Voska, R. Zajicek, A. Zajicova, P. Lesny, A. Jirkovska, J. Michalek, M. Munzarova, V. Holan, and E. Sykova. Nanofibers prepared by needleless electrospinning technology as scaffolds for wound healing. J. Mater. Sci. Mater. Med. 23:931–941, 2012.

    Article  CAS  PubMed  Google Scholar 

  21. Fedorovich, N. E., J. Alblas, J. R. de Wijn, W. E. Hennink, A. J. Verbout, and W. J. Dhert. Hydrogels as extracellular matrices for skeletal tissue engineering: state-of-the-art and novel application in organ printing. Tissue Eng. 13:1905–1925, 2007.

    Article  CAS  PubMed  Google Scholar 

  22. Ferris, C. J., K. G. Gilmore, and G. G. Wallace. Biofabrication: an overview of the approaches used for printing of living cells. Appl. Microbiol. Biotechnol. 97:4243–4258, 2013.

    Article  CAS  PubMed  Google Scholar 

  23. Fleming, P. A., W. S. Argraves, C. Gentile, A. Neagu, G. Forgacs, and C. J. Drake. Fusion of uniluminal vascular spheroids: a model for assembly of blood vessels. Dev. Dyn. 239:398–406, 2010.

    Article  PubMed Central  PubMed  Google Scholar 

  24. Galus, R., M. Antiszko, and P. Wlodarski. Clinical applications of hyaluronic acid. Pol. Merkur Lekarski. 20:606–608, 2006.

    PubMed  Google Scholar 

  25. Goldstein, A. S., and G. Christ. Functional tissue engineering requires bioreactor strategies. Tissue Eng. Part A. 15:739–740, 2009.

    Article  PubMed  Google Scholar 

  26. Gou, M., X. Qu, W. Zhu, M. Xiang, J. Yang, K. Zhang, Y. Wei, and S. Chen. Bio-inspired detoxification using 3D-printed hydrogel nanocomposites. Nat. Commun. 5:3774, 2014.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Gruene, M., A. Deiwick, L. Koch, S. Schlie, C. Unger, N. Hofmann, I. Bernemann, B. Glasmacher, and B. Chichkov. Laser printing of stem cells for biofabrication of scaffold-free autologous grafts. Tissue Eng. Part C 17:79–87, 2010.

    Article  Google Scholar 

  28. Guillotin, B., and F. Guillemot. Cell patterning technologies for organotypic tissue fabrication. Trends Biotechnol. 29:183–190, 2011.

    Article  CAS  PubMed  Google Scholar 

  29. Guillotin, B., A. Souquet, S. Catros, M. Duocastella, B. Pippenger, S. Bellance, R. Bareille, M. Remy, L. Bordenave, J. Amedee, and F. Guillemot. Laser assisted bioprinting of engineered tissue with high cell density and microscale organization. Biomaterials. 31:7250–7256, 2010.

    Article  CAS  PubMed  Google Scholar 

  30. Hahn, M. S., M. K. McHale, E. Wang, R. H. Schmedlen, and J. L. West. Physiologic pulsatile flow bioreactor conditioning of poly(ethylene glycol)-based tissue engineered vascular grafts. Ann. Biomed. Eng. 35:190–200, 2007.

    Article  PubMed  Google Scholar 

  31. Hesse, E., T. E. Hefferan, J. E. Tarara, C. Haasper, R. Meller, C. Krettek, L. Lu, and M. J. Yaszemski. Collagen type I hydrogel allows migration, proliferation, and osteogenic differentiation of rat bone marrow stromal cells. J. Biomed. Mater. Res. A. 94:442–449, 2010.

    PubMed Central  PubMed  Google Scholar 

  32. Hopp, B., T. Smausz, N. Kresz, N. Barna, Z. Bor, L. Kolozsvari, D. B. Chrisey, A. Szabo, and A. Nogradi. Survival and proliferative ability of various living cell types after laser-induced forward transfer. Tissue Eng. 11:1817–1823, 2005.

    Article  CAS  PubMed  Google Scholar 

  33. Howarth, A. G., and B. R. Stevenson. Molecular environment of ZO-1 in epithelial and non-epithelial cells. Cell Motil. Cytoskelet. 31:323–332, 1995.

    Article  CAS  Google Scholar 

  34. Hribar, K. C., P. Soman, J. Warner, P. Chung, and S. Chen. Light-assisted direct-write of 3D functional biomaterials. Lab. Chip. 14:268–275, 2014.

    Article  CAS  PubMed  Google Scholar 

  35. Iwami, K., T. Noda, K. Ishida, K. Morishima, M. Nakamura, and N. Umeda. Bio rapid prototyping by extruding/aspirating/refilling thermoreversible hydrogel. Biofabrication. 2:014108, 2010.

    Article  CAS  PubMed  Google Scholar 

  36. Jakab, K., B. Damon, F. Marga, O. Doaga, V. Mironov, I. Kosztin, R. Markwald, and G. Forgacs. Relating cell and tissue mechanics: implications and applications. Dev. Dyn. 237:2438–2449, 2008.

    Article  PubMed  Google Scholar 

  37. Jakab, K., A. Neagu, V. Mironov, R. R. Markwald, and G. Forgacs. Engineering biological structures of prescribed shape using self-assembling multicellular systems. Proc. Natl. Acad. Sci. USA. 101:2864–2869, 2004.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  38. Jakab, K., C. Norotte, B. Damon, F. Marga, A. Neagu, C. L. Besch-Williford, A. Kachurin, K. H. Church, H. Park, V. Mironov, R. Markwald, G. Vunjak-Novakovic, and G. Forgacs. Tissue engineering by self-assembly of cells printed into topologically defined structures. Tissue Eng. Part A. 14:413–421, 2008.

    Article  CAS  PubMed  Google Scholar 

  39. Jia, J., D. J. Richards, S. Pollard, Y. Tan, J. Rodriguez, R. P. Visconti, T. C. Trusk, M. J. Yost, H. Yao, R. R. Markwald, and Y. Mei. Engineering alginate as bioink for bioprinting. Acta Biomater. 10:4323–4331, 2014.

    Article  CAS  PubMed  Google Scholar 

  40. Kanda, N., N. Morimoto, A. A. Ayvazyan, S. Takemoto, K. Kawai, Y. Nakamura, Y. Sakamoto, T. Taira, and S. Suzuki. Evaluation of a novel collagen-gelatin scaffold for achieving the sustained release of basic fibroblast growth factor in a diabetic mouse model. J. Tissue Eng. Regen. Med. 8:29–40, 2014.

    Article  CAS  PubMed  Google Scholar 

  41. Kirker, K. R., Y. Luo, S. E. Morris, J. Shelby, and G. D. Prestwich. Glycosaminoglycan hydrogels as supplemental wound dressings for donor sites. J. Burn. Care Rehabil. 25:276–286, 2004.

    Article  CAS  PubMed  Google Scholar 

  42. Knudson, C. B., and W. Knudson. Cartilage proteoglycans. Semin. Cell Dev. Biol. 12:69–78, 2001.

    Article  CAS  PubMed  Google Scholar 

  43. Koch, L., S. Kuhn, H. Sorg, M. Gruene, S. Schlie, R. Gaebel, B. Polchow, K. Reimers, S. Stoelting, N. Ma, P. M. Vogt, G. Steinhoff, and B. Chichkov. Laser printing of skin cells and human stem cells. Tissue Eng. Part C 16:847–854, 2010.

    Article  CAS  Google Scholar 

  44. Lee, S. J., J. Liu, S. H. Oh, S. Soker, A. Atala, and J. J. Yoo. Development of a composite vascular scaffolding system that withstands physiological vascular conditions. Biomaterials. 29:2891–2898, 2008.

    Article  CAS  PubMed  Google Scholar 

  45. Li, C., P. Chen, Y. Shao, X. Zhou, Y. Wu, Z. Yang, Z. Li, T. Weil, and D. Liu. A writable polypeptide-DNA hydrogel with rationally designed multi-modification sites. Small, 2014. doi:10.1002/smll.201401906.

  46. Li, J., X. Li, X. Ni, X. Wang, H. Li, and K. W. Leong. Self-assembled supramolecular hydrogels formed by biodegradable PEO-PHB-PEO triblock copolymers and alpha-cyclodextrin for controlled drug delivery. Biomaterials. 27:4132–4140, 2006.

    Article  CAS  PubMed  Google Scholar 

  47. Lin, H., D. Zhang, P. G. Alexander, G. Yang, J. Tan, A. W. Cheng, and R. S. Tuan. Application of visible light-based projection stereolithography for live cell-scaffold fabrication with designed architecture. Biomaterials. 34:331–339, 2013.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  48. Liu, Y., X. Z. Shu, and G. D. Prestwich. Tumor engineering: orthotopic cancer models in mice using cell-loaded, injectable, cross-linked hyaluronan-derived hydrogels. Tissue Eng. 13:1091–1101, 2007.

    Article  CAS  PubMed  Google Scholar 

  49. Machingal, M. A., B. T. Corona, T. J. Walters, V. Kesireddy, C. N. Koval, A. Dannahower, W. Zhao, J. J. Yoo, and G. J. Christ. A tissue-engineered muscle repair construct for functional restoration of an irrecoverable muscle injury in a murine model. Tissue Eng. Part A. 17:2291–2303, 2011.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  50. Marga, F., K. Jakab, C. Khatiwala, B. Shepherd, S. Dorfman, B. Hubbard, S. Colbert, and F. Gabor. Toward engineering functional organ modules by additive manufacturing. Biofabrication. 4:022001, 2012.

    Article  PubMed  Google Scholar 

  51. Matsuura, K., R. Utoh, K. Nagase, and T. Okano. Cell sheet approach for tissue engineering and regenerative medicine. J. Control Release. 190C:228–239, 2014.

    Article  Google Scholar 

  52. Miki, D., K. Dastgheib, T. Kim, A. Pfister-Serres, K. A. Smeds, M. Inoue, D. L. Hatchell, and M. W. Grinstaff. A photopolymerized sealant for corneal lacerations. Cornea. 21:393–399, 2002.

    Article  PubMed  Google Scholar 

  53. Mironov, V., T. Boland, T. Trusk, G. Forgacs, and R. R. Markwald. Organ printing: computer-aided jet-based 3D tissue engineering. Trends Biotechnol. 21:157–161, 2003.

    Article  CAS  PubMed  Google Scholar 

  54. Mironov, V., V. Kasyanov, C. Drake, and R. R. Markwald. Organ printing: promises and challenges. Regen. Med. 3:93–103, 2008.

    Article  CAS  PubMed  Google Scholar 

  55. Mironov, V., V. Kasyanov, K. McAllister, S. Oliver, J. Sistino, and R. Markwald. Perfusion bioreactor for vascular tissue engineering with capacities for longitudinal stretch. J. Craniofac. Surg. 14:340–347, 2003.

    Article  PubMed  Google Scholar 

  56. Mironov, V., G. Prestwich, and G. Forgacs. Bioprinting living structures. J. Mater. Chem. 17:2054–2060, 2007.

    Article  CAS  Google Scholar 

  57. Mironov, V., N. Reis, and B. Derby. Review: bioprinting: a beginning. Tissue Eng. 12:631–634, 2006.

    Article  PubMed  Google Scholar 

  58. Mironov, V., R. P. Visconti, V. Kasyanov, G. Forgacs, C. J. Drake, and R. R. Markwald. Organ printing: tissue spheroids as building blocks. Biomaterials. 30:2164–2174, 2009.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  59. Moon, S., S. K. Hasan, Y. S. Song, F. Xu, H. O. Keles, F. Manzur, S. Mikkilineni, J. W. Hong, J. Nagatomi, E. Haeggstrom, A. Khademhosseini, and U. Demirci. Layer by layer three-dimensional tissue epitaxy by cell-laden hydrogel droplets. Tissue Eng. Part C Methods. 16:157–166, 2010.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  60. Muller, M., J. Becher, M. Schnabelrauch, and M. Zenobi-Wong. Printing thermoresponsive reverse molds for the creation of patterned two-component hydrogels for 3D cell culture. J. Vis. Exp. 77:e50632, 2013.

    PubMed  Google Scholar 

  61. Murphy, S. V., and A. Atala. 3D bioprinting of tissues and organs. Nat. Biotechnol. 32:773–785, 2014.

    Article  CAS  PubMed  Google Scholar 

  62. Murphy, S. V., A. Skardal, and A. Atala. Evaluation of hydrogels for bio-printing applications. J. Biomed. Mater. Res. A. 101:272–284, 2013.

    Article  PubMed  Google Scholar 

  63. Nair, K., M. Gandhi, S. Khalil, K. C. Yan, M. Marcolongo, K. Barbee, and W. Sun. Characterization of cell viability during bioprinting processes. Biotechnol. J. 4:1168–1177, 2009.

    Article  CAS  PubMed  Google Scholar 

  64. Nakamura, M., S. Iwanaga, C. Henmi, K. Arai, and Y. Nishiyama. Biomatrices and biomaterials for future developments of bioprinting and biofabrication. Biofabrication. 2:014110, 2010.

    Article  CAS  PubMed  Google Scholar 

  65. Norotte, C., F. S. Marga, L. E. Niklason, and G. Forgacs. Scaffold-free vascular tissue engineering using bioprinting. Biomaterials. 30:5910–5917, 2009.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  66. Opara, E. C., S. H. Mirmalek-Sani, O. Khanna, M. L. Moya, and E. M. Brey. Design of a bioartificial pancreas(+). J. Investig. Med. 58:831–837, 2010.

    PubMed Central  PubMed  Google Scholar 

  67. Parisi-Amon, A., W. Mulyasasmita, C. Chung, and S. C. Heilshorn. Protein-engineered injectable hydrogel to improve retention of transplanted adipose-derived stem cells. Adv. Healthc. Mater. 2:428–432, 2013.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  68. Pescosolido, L., W. Schuurman, J. Malda, P. Matricardi, F. Alhaique, T. Coviello, P. R. van Weeren, W. J. Dhert, W. E. Hennink, and T. Vermonden. Hyaluronic acid and dextran-based semi-IPN hydrogels as biomaterials for bioprinting. Biomacromolecules. 12:1831–1838, 2011.

    Article  CAS  PubMed  Google Scholar 

  69. Prestwich, G. D. Evaluating drug efficacy and toxicology in three dimensions: using synthetic extracellular matrices in drug discovery. Acc. Chem. Res. 41:139–148, 2008.

    Article  CAS  PubMed  Google Scholar 

  70. Prestwich, G. D., and J. W. Kuo. Chemically-modified HA for therapy and regenerative medicine. Curr. Pharm. Biotechnol. 9:242–245, 2008.

    Article  CAS  PubMed  Google Scholar 

  71. Rashid, S. T., B. Fuller, G. Hamilton, and A. M. Seifalian. Tissue engineering of a hybrid bypass graft for coronary and lower limb bypass surgery. FASEB J. 22:2084–2089, 2008.

    Article  CAS  PubMed  Google Scholar 

  72. Roth, E. A., T. Xu, M. Das, C. Gregory, J. J. Hickman, and T. Boland. Inkjet printing for high-throughput cell patterning. Biomaterials. 25:3707–3715, 2004.

    Article  CAS  PubMed  Google Scholar 

  73. Santos, E., J. Zarate, G. Orive, R. M. Hernandez, and J. L. Pedraz. Biomaterials in cell microencapsulation. Adv. Exp. Med. Biol. 670:5–21, 2010.

    Article  CAS  PubMed  Google Scholar 

  74. Scanlon, C. S., E. A. Van Tubergen, R. C. Inglehart, and N. J. D’Silva. Biomarkers of epithelial-mesenchymal transition in squamous cell carcinoma. J. Dent. Res. 92:114–121, 2013.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  75. Schiavinato, A., M. Finesso, R. Cortivo, and G. Abatangelo. Comparison of the effects of intra-articular injections of Hyaluronan and its chemically cross-linked derivative (Hylan G-F20) in normal rabbit knee joints. Clin. Exp. Rheumatol. 20:445–454, 2002.

    CAS  PubMed  Google Scholar 

  76. Skardal, A., D. Mack, E. Kapetanovic, A. Atala, J. D. Jackson, J. J. Yoo, and S. Soker. Bioprinted amniotic fluid-derived stem cells accelerate healing of large skin wounds. Stem Cells Transl. Med. 1:792–802, 2012.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  77. Skardal, A., L. Smith, S. Bharadwaj, A. Atala, S. Soker, and Y. Zhang. Tissue specific synthetic ECM hydrogels for 3-D in vitro maintenance of hepatocyte function. Biomaterials. 33:4565–4575, 2012.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  78. Skardal, A., J. Zhang, L. McCoard, S. Oottamasathien, and G. D. Prestwich. Dynamically crosslinked gold nanoparticle—hyaluronan hydrogels. Adv. Mater. 22:4736–4740, 2010.

    Article  CAS  PubMed  Google Scholar 

  79. Skardal, A., J. Zhang, L. McCoard, X. Xu, S. Oottamasathien, and G. D. Prestwich. Photocrosslinkable hyaluronan-gelatin hydrogels for two-step bioprinting. Tissue Eng. Part A. 16:2675–2685, 2010.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  80. Skardal, A., J. Zhang, and G. D. Prestwich. Bioprinting vessel-like constructs using hyaluronan hydrogels crosslinked with tetrahedral polyethylene glycol tetracrylates. Biomaterials. 31:6173–6181, 2010.

    Article  CAS  PubMed  Google Scholar 

  81. Soman, P., P. H. Chung, A. P. Zhang, and S. Chen. Digital microfabrication of user-defined 3D microstructures in cell-laden hydrogels. Biotechnol. Bioeng. 110:3038–3047, 2013.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  82. Visconti, R. P., V. Kasyanov, C. Gentile, J. Zhang, R. R. Markwald, and V. Mironov. Towards organ printing: engineering an intra-organ branched vascular tree. Expert. Opin. Biol. Ther. 10:409–420, 2010.

    Article  PubMed  Google Scholar 

  83. Williams, D. F. On the nature of biomaterials. Biomaterials. 30:5897–5909, 2009.

    Article  CAS  PubMed  Google Scholar 

  84. Williams, D. The continuing evolution of biomaterials. Biomaterials. 32:1–2, 2011.

    Article  CAS  PubMed  Google Scholar 

  85. Wust, S., M. E. Godla, R. Muller, and S. Hofmann. Tunable hydrogel composite with two-step processing in combination with innovative hardware upgrade for cell-based three-dimensional bioprinting. Acta Biomater. 10:630–640, 2014.

    Article  CAS  PubMed  Google Scholar 

  86. Xu, T., K. W. Binder, M. Z. Albanna, D. Dice, W. Zhao, J. J. Yoo, and A. Atala. Hybrid printing of mechanically and biologically improved constructs for cartilage tissue engineering applications. Biofabrication. 5:015001, 2013.

    Article  PubMed  Google Scholar 

  87. Xu, K., D. A. Cantu, Y. Fu, J. Kim, X. Zheng, P. Hematti, and W. J. Kao. Thiol-ene Michael-type formation of gelatin/poly(ethylene glycol) biomatrices for three-dimensional mesenchymal stromal/stem cell administration to cutaneous wounds. Acta Biomater. 9:8802–8814, 2013.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  88. Zawaneh, P. N., S. P. Singh, R. F. Padera, P. W. Henderson, J. A. Spector, and D. Putnam. Design of an injectable synthetic and biodegradable surgical biomaterial. Proc. Natl. Acad. Sci. USA. 107:11014–11019, 2010.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  89. Zhang, A. P., X. Qu, P. Soman, K. C. Hribar, J. W. Lee, S. Chen, and S. He. Rapid fabrication of complex 3D extracellular microenvironments by dynamic optical projection stereolithography. Adv. Mater. 24:4266–4270, 2012.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  90. Zhang, C., X. Wen, N. R. Vyavahare, and T. Boland. Synthesis and characterization of biodegradable elastomeric polyurethane scaffolds fabricated by the inkjet technique. Biomaterials. 29:3781–3791, 2008.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Aleksander Skardal or Anthony Atala.

Additional information

Associate Editor Rosemarie Hunziker oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Skardal, A., Atala, A. Biomaterials for Integration with 3-D Bioprinting. Ann Biomed Eng 43, 730–746 (2015). https://doi.org/10.1007/s10439-014-1207-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-014-1207-1

Keywords

Navigation