Advertisement

Annals of Biomedical Engineering

, Volume 43, Issue 3, pp 568–576 | Cite as

Extracellular Matrix as a Driver for Lung Regeneration

  • Jenna L. Balestrini
  • Laura E. Niklason
Article

Abstract

Extracellular matrix has manifold roles in tissue mechanics, guidance of cellular behavior, developmental biology, and regenerative medicine. Over the past several decades, various pre-clinical and clinical studies have shown that many connective tissues may be replaced and/or regenerated using suitable extracellular matrix scaffolds. More recently, decellularization of lung tissue has shown that gentle removal of cells can leave behind a “footprint” within the matrix that may guide cellular adhesion, differentiation and homing following cellular repopulation. Fundamental issues like understanding matrix composition and micro-mechanics remain difficult to tackle, largely because of a lack of available assays and tools for systematically characterizing intact matrix from tissues and organs. This review will critically examine the role of engineered and native extracellular matrix in tissue and lung regeneration, and provide insights into directions for future research and translation.

Keywords

Biomaterials Lung decellularization Extracellular matrix Cell-matrix interactions Regenerative medicine Matrix mechanics 

Notes

Acknowledgments

This work was supported by a Grant NIH U01 HL111016-01 (to LEN). L.E.N. has a financial interest in Humacyte, Inc, a regenerative medicine company. Humacyte did not fund these studies, and Humacyte did not affect the design, interpretation, or reporting of any of the experiments herein.

References

  1. 1.
    Adair-Kirk, T. L., and R. M. Senior. Fragments of extracellular matrix as mediators of inflammation. Int. J. Biochem. Cell Biol. 40:1101–1110, 2008.CrossRefPubMedCentralPubMedGoogle Scholar
  2. 2.
    Alford, A. I., and D. E. Rannels. Extracellular matrix fibronectin alters connexin43 expression by alveolar epithelial cells. Am. J. Physiol. Lung Cell. Mol. Physiol. 280:L680–L688, 2001.PubMedGoogle Scholar
  3. 3.
    Badylak, S. F. An assay to quantify chemotactic properties of degradation products from extracellular matrix. Methods Mol. Biol., 1202:103–110, 2014.Google Scholar
  4. 4.
    Balestrini, J. L., S. Chaudhry, V. Sarrazy, A. Koehler, and B. Hinz. The mechanical memory of lung myofibroblasts. Integr. Biol. (Camb). 4:410–421, 2012.CrossRefPubMedGoogle Scholar
  5. 5.
    Bateman, E. D., M. Turner-Warwick, and B. C. Adelmann-Grill. Immunohistochemical study of collagen types in human foetal lung and fibrotic lung disease. Thorax 36:645–653, 1981.CrossRefPubMedCentralPubMedGoogle Scholar
  6. 6.
    Bensusan, H. B., T. L. Koh, K. G. Henry, B. A. Murray, and L. A. Culp. Evidence that fibronectin is the collagen receptor on platelet membranes. Proc. Natl. Acad. Sci. USA. 75:5864–5868, 1978.CrossRefPubMedCentralPubMedGoogle Scholar
  7. 7.
    Bonvillain, R. W., S. Danchuk, D. E. Sullivan, A. M. Betancourt, J. A. Semon, et al. A nonhuman primate model of lung regeneration: detergent-mediated decellularization and initial in vitro recellularization with mesenchymal stem cells. Tissue Eng. Part A 18:2437–2452, 2012.CrossRefPubMedCentralPubMedGoogle Scholar
  8. 8.
    Booth, A. J., R. Hadley, A. M. Cornett, A. A. Dreffs, S. A. Matthes, et al. Acellular normal and fibrotic human lung matrices as a culture system for in vitro investigation. Am. J. Respir. Crit. Care Med. 186:866–876, 2012.CrossRefPubMedCentralPubMedGoogle Scholar
  9. 9.
    Bornstein, P., and E. H. Sage. Matricellular proteins: extracellular modulators of cell function. Curr. Opin. Cell Biol. 14:608–616, 2002.CrossRefPubMedGoogle Scholar
  10. 10.
    Bottaro, D. P., A. Liebmann-Vinson, and M. A. Heidaran. Molecular signaling in bioengineered tissue microenvironments. Ann. N. Y. Acad. Sci. 961:143–153, 2002.CrossRefPubMedGoogle Scholar
  11. 11.
    Brown, B. N. and S. F. Badylak. Extracellular matrix as an inductive scaffold for functional tissue reconstruction. Transl Res. 163(4):268–285, 2014.Google Scholar
  12. 12.
    Burnett, W., K. Yoon, A. Finnigan-Bunick, and J. Rosenbloom. Control of elastin synthesis. J. Invest. Dermatol. 79(Suppl 1):138s–145s, 1982.CrossRefPubMedGoogle Scholar
  13. 13.
    Calle, E. A., M. Ghaedi, S. Sundaram, A. Sivarapatna, M. K. Tseng, et al. Strategies for whole lung tissue engineering. IEEE Trans. Biomed. Eng. 61:1482–1496, 2014.CrossRefPubMedGoogle Scholar
  14. 14.
    Clark, R. A. Regulation of fibroplasia in cutaneous wound repair. Am. J. Med. Sci. 306:42–48, 1993.CrossRefPubMedGoogle Scholar
  15. 15.
    Clark, R. A., R. J. Mason, J. M. Folkvord, and J. A. McDonald. Fibronectin mediates adherence of rat alveolar type II epithelial cells via the fibroblastic cell-attachment domain. J. Clin. Invest. 77:1831–1840, 1986.CrossRefPubMedCentralPubMedGoogle Scholar
  16. 16.
    Clark, R. A., L. D. Nielsen, M. P. Welch, and J. M. McPherson. Collagen matrices attenuate the collagen-synthetic response of cultured fibroblasts to TGF-beta. J. Cell Sci. 108:1251–1261, 1995.PubMedGoogle Scholar
  17. 17.
    Coraux, C., A. Delplanque, J. Hinnrasky, B. Peault, E. Puchelle, et al. Distribution of integrins during human fetal lung development. J. Histochem. Cytochem. 46:803–810, 1998.CrossRefPubMedGoogle Scholar
  18. 18.
    Coraux, C., G. Meneguzzi, P. Rousselle, E. Puchelle, and D. Gaillard. Distribution of laminin 5, integrin receptors, and branching morphogenesis during human fetal lung development. Dev. Dyn. 225:176–185, 2002.CrossRefPubMedGoogle Scholar
  19. 19.
    Crapo, J. D., B. E. Barry, P. Gehr, M. Bachofen, and E. R. Weibel. Cell number and cell characteristics of the normal human lung. Am. Rev. Respir. Dis. 126:332–337, 1982.PubMedGoogle Scholar
  20. 20.
    Crapo, P. M., T. W. Gilbert, and S. F. Badylak. An overview of tissue and whole organ decellularization processes. Biomaterials 32:3233–3243, 2012.CrossRefGoogle Scholar
  21. 21.
    DeQuach, J. A., V. Mezzano, A. Miglani, S. Lange, G. M. Keller, et al. Simple and high yielding method for preparing tissue specific extracellular matrix coatings for cell culture. PLoS ONE 5:e13039, 2010.CrossRefPubMedCentralPubMedGoogle Scholar
  22. 22.
    Dunsmore, S. E., and D. E. Rannels. Extracellular matrix biology in the lung. Am. J. Physiol. 270:L3–L27, 1996.PubMedGoogle Scholar
  23. 23.
    Dvorak, H. F., V. S. Harvey, P. Estrella, L. F. Brown, J. McDonagh, et al. Fibrin containing gels induce angiogenesis. Implications for tumor stroma generation and wound healing. Lab. Invest. 57:673–686, 1987.PubMedGoogle Scholar
  24. 24.
    Eisenberg, J. L., A. Safi, X. Wei, H. D. Espinosa, G. S. Budinger, et al. Substrate stiffness regulates extracellular matrix deposition by alveolar epithelial cells. Res. Rep. Biol. 1–12:2012, 2011.Google Scholar
  25. 25.
    Engler, A. J., S. Sen, H. L. Sweeney, and D. E. Discher. Matrix elasticity directs stem cell lineage specification. Cell 126:677–689, 2006.CrossRefPubMedGoogle Scholar
  26. 26.
    Engvall, E., E. Ruoslahti, and E. J. Miller. Affinity of fibronectin to collagens of different genetic types and to fibrinogen. J. Exp. Med. 147:1584–1595, 1978.CrossRefPubMedGoogle Scholar
  27. 27.
    Faulk, D. M., C. A. Carruthers, H. J. Warner, C. R. Kramer, J. E. Reing, et al. The effect of detergents on the basement membrane complex of a biologic scaffold material. Acta Biomater. 10:183–193, 2014.CrossRefPubMedGoogle Scholar
  28. 28.
    Frith, J. E., R. J. Mills, J. E. Hudson, and J. J. Cooper-White. Tailored integrin-extracellular matrix interactions to direct human mesenchymal stem cell differentiation. Stem Cells Dev. 21:2442–2456, 2012.CrossRefPubMedCentralPubMedGoogle Scholar
  29. 29.
    Fung, Y. C. Biomechanics: Mechanical Properties of Living Tissues (2nd ed.). New York: Springer Verlag, 1993.CrossRefGoogle Scholar
  30. 30.
    Gilbert, T. W., J. M. Freund, and S. F. Badylak. Quantification of DNA in biologic scaffold materials. J. Surg. Res. 152:135–139, 2009.CrossRefPubMedCentralPubMedGoogle Scholar
  31. 31.
    Gillery, P., F. X. Maquart, and J. P. Borel. Fibronectin dependence of the contraction of collagen lattices by human skin fibroblasts. Exp. Cell Res. 167:29–37, 1986.CrossRefPubMedGoogle Scholar
  32. 32.
    Gilpin, S. E., J. P. Guyette, G. Gonzalez, X. Ren, J. M. Asara, et al. Perfusion decellularization of human and porcine lungs: Bringing the matrix to clinical scale. J. Heart Lung Transplant. 33(3):298–308, 2014.Google Scholar
  33. 33.
    Govignon, E. J., M. Murphy, J. Potzka, J. Crews, K. L. Billiar, et al. Development of a Serum-Free Human Cell Derived Extracellular Matrix (ECM). Brussels: European Tissue Repair Society, 2000.Google Scholar
  34. 34.
    Horwitz, A. L., and R. C. Crystal. Content and synthesis of glycosaminoglycans in the developing lung. J. Clin. Invest. 56:1312–1318, 1975.CrossRefPubMedCentralPubMedGoogle Scholar
  35. 35.
    Ingber, D. E., and J. Folkman. Mechanochemical switching between growth and differentiation during fibroblast growth factor-stimulated angiogenesis in vitro: role of extracellular matrix. J. Cell Biol. 109:317–330, 1989.CrossRefPubMedGoogle Scholar
  36. 36.
    Iwata, T., A. Philipovskiy, A. J. Fisher, R. G. Presson, Jr., M. Chiyo, et al. Anti-type V collagen humoral immunity in lung transplant primary graft dysfunction. J Immunol. 181:5738–5747, 2008.CrossRefPubMedCentralPubMedGoogle Scholar
  37. 37.
    Johnson, T. D., J. A. Dequach, R. Gaetani, J. Ungerleider, D. Elhag, et al. Human versus porcine tissue sourcing for an injectable myocardial matrix hydrogel. Biomater. Sci. 2014:60283D, 2014.PubMedCentralPubMedGoogle Scholar
  38. 38.
    Keane, T. J., R. Londono, N. J. Turner, and S. F. Badylak. Consequences of ineffective decellularization of biologic scaffolds on the host response. Biomaterials 33:1771–1781, 2012.CrossRefPubMedGoogle Scholar
  39. 39.
    Kelley, J., L. Chrin, J. T. Coflesky, and J. N. Evans. Localization of collagen in the rat lung: biochemical quantitation of types I and III collagen in small airways, vessels, and parenchyma. Lung 167:313–322, 1989.CrossRefPubMedGoogle Scholar
  40. 40.
    Koyama, H., E. W. Raines, K. E. Bornfeldt, J. M. Roberts, and R. Ross. Fibrillar collagen inhibits arterial smooth muscle proliferation through regulation of Cdk2 inhibitors. Cell 87:1069–1078, 1996.CrossRefPubMedGoogle Scholar
  41. 41.
    Laurent, G. J. Lung collagen: more than scaffolding. Thorax 41:418–428, 1986.CrossRefPubMedCentralPubMedGoogle Scholar
  42. 42.
    Lesur, O., K. Arsalane, and D. Lane. Lung alveolar epithelial cell migration in vitro: modulators and regulation processes. Am. J. Physiol. 270:L311–L319, 1996.PubMedGoogle Scholar
  43. 43.
    Li, Z. Y., K. Hirayoshi, and Y. Suzuki. Expression of N-deacetylase/sulfotransferase and 3-O-sulfotransferase in rat alveolar type II cells. Am. J. Physiol. Lung Cell. Mol. Physiol. 279:L292–L301, 2000.PubMedGoogle Scholar
  44. 44.
    Liu, F., J. D. Mih, B. S. Shea, A. T. Kho, A. S. Sharif, et al. Feedback amplification of fibrosis through matrix stiffening and COX-2 suppression. J. Cell Biol. 190:693–706, 2010.CrossRefPubMedCentralPubMedGoogle Scholar
  45. 45.
    Liu, F. and D. J. Tschumperlin. Micro-mechanical characterization of lung tissue using atomic force microscopy. J. Vis. Exp. 2011. doi: 10.3791/2911
  46. 46.
    Lo, C. M., H. B. Wang, M. Dembo, and Y. L. Wang. Cell movement is guided by the rigidity of the substrate. Biophys. J . 79:144–152, 2000.CrossRefPubMedCentralPubMedGoogle Scholar
  47. 47.
    Lotze, M. T., A. Deisseroth, and A. Rubartelli. Damage associated molecular pattern molecules. Clin. Immunol. 124:1–4, 2007.CrossRefPubMedCentralPubMedGoogle Scholar
  48. 48.
    Luque, T., E. Melo, E. Garreta, J. Cortiella, J. Nichols, et al. Local micromechanical properties of decellularized lung scaffolds measured with atomic force microscopy. Acta Biomater. 9:6852–6859, 2013.CrossRefPubMedGoogle Scholar
  49. 49.
    Macchiarini, P., P. Jungebluth, T. Go, M. A. Asnaghi, L. E. Rees, et al. Clinical transplantation of a tissue-engineered airway. Lancet 372:2023–2030, 2008.CrossRefPubMedGoogle Scholar
  50. 50.
    Mackay, E. H., J. Banks, B. Sykes, and G. Lee. Structural basis for the changing physical properties of human pulmonary vessels with age. Thorax 33:335–344, 1978.CrossRefPubMedCentralPubMedGoogle Scholar
  51. 51.
    Madri, J. A., and H. Furthmayr. Collagen polymorphism in the lung. An immunochemical study of pulmonary fibrosis. Hum. Pathol. 11:353–366, 1980.CrossRefPubMedGoogle Scholar
  52. 52.
    Martin-Bermudo, M. D. Integrins modulate the Egfr signaling pathway to regulate tendon cell differentiation in the Drosophila embryo. Development 127:2607–2615, 2000.PubMedGoogle Scholar
  53. 53.
    Mays, P. K., R. J. McAnulty, J. S. Campa, and G. J. Laurent. Age-related changes in collagen synthesis and degradation in rat tissues. Importance of degradation of newly synthesized collagen in regulating collagen production. Biochem. J. 276(Pt 2):307–313, 1991.PubMedCentralPubMedGoogle Scholar
  54. 54.
    Mercer, R. R., and J. D. Crapo. Spatial distribution of collagen and elastin fibers in the lungs. J. Appl. Physiol. 69:756–765, 1990.PubMedGoogle Scholar
  55. 55.
    Mercer, R. R., M. L. Russell, and J. D. Crapo. Alveolar septal structure in different species. J. Appl. Physiol. 77(1060–6):1994, 1985.Google Scholar
  56. 56.
    Mih, J. D., A. S. Sharif, F. Liu, A. Marinkovic, M. M. Symer, et al. A multiwell platform for studying stiffness-dependent cell biology. PLoS One. 6:e19929, 2011.CrossRefPubMedCentralPubMedGoogle Scholar
  57. 57.
    Miner, J. H., B. L. Patton, S. I. Lentz, D. J. Gilbert, W. D. Snider, et al. The laminin alpha chains: expression, developmental transitions, and chromosomal locations of alpha1-5, identification of heterotrimeric laminins 8–11, and cloning of a novel alpha3 isoform. J. Cell Biol. 137:685–701, 1997.CrossRefPubMedCentralPubMedGoogle Scholar
  58. 58.
    Murray, J. C., L. Liotta, S. I. Rennard, and G. R. Martin. Adhesion characteristics of murine metastatic and nonmetastatic tumor cells in vitro. Cancer Res. 40:347–351, 1980.PubMedGoogle Scholar
  59. 59.
    Nguyen, N. M., D. G. Kelley, J. A. Schlueter, M. J. Meyer, R. M. Senior, et al. Epithelial laminin alpha5 is necessary for distal epithelial cell maturation, VEGF production, and alveolization in the developing murine lung. Dev. Biol. 282:111–125, 2005.CrossRefPubMedGoogle Scholar
  60. 60.
    Nichols, J. E., J. Niles, M. Riddle, G. Vargas, T. Schilagard, et al. Production and assessment of decellularized pig and human lung scaffolds. Tissue Eng. Part A 19:2045–2062, 2013.CrossRefPubMedCentralPubMedGoogle Scholar
  61. 61.
    O’Neill, J. D., R. Anfang, A. Anandappa, J. Costa, J. Javidfar, et al. Decellularization of human and porcine lung tissues for pulmonary tissue engineering. Ann. Thorac. Surg. 96:1046–1055; discussion 55–56, 2013.Google Scholar
  62. 62.
    Otranto, M., V. Sarrazy, F. Bonte, B. Hinz, G. Gabbiani, et al. The role of the myofibroblast in tumor stroma remodeling. Cell Adh. Migr. 6:203–219, 2012.CrossRefPubMedCentralPubMedGoogle Scholar
  63. 63.
    Papakonstantinou, E., and G. Karakiulakis. The ‘sweet’ and ‘bitter’ involvement of glycosaminoglycans in lung diseases: pharmacotherapeutic relevance. Br. J. Pharmacol. 157:1111–1127, 2009.CrossRefPubMedCentralPubMedGoogle Scholar
  64. 64.
    Petersen, T. H., E. A. Calle, M. B. Colehour, and L. E. Niklason. Matrix composition and mechanics of decellularized lung scaffolds. Cells Tissues Organs 195:222–231, 2012.CrossRefPubMedCentralPubMedGoogle Scholar
  65. 65.
    Petersen, T. H., E. A. Calle, L. Zhao, E. J. Lee, L. Gui, et al. Tissue-engineered lungs for in vivo implantation. Science 329:538–541, 2010.CrossRefPubMedCentralPubMedGoogle Scholar
  66. 66.
    Pfister, R. R., J. L. Haddox, K. W. Lam, and K. M. Lank. Preliminary characterization of a polymorphonuclear leukocyte stimulant isolated from alkali-treated collagen. Invest. Ophthalmol. Vis. Sci. 29:955–962, 1988.PubMedGoogle Scholar
  67. 67.
    Pierce, J. A. Age related changes in the fibrous proteins of the lungs. Arch. Environ. Health 6:50–54, 1963.CrossRefPubMedGoogle Scholar
  68. 68.
    Pierce, J. A., and J. B. Hocott. Studies on the collagen and elastin content of the human lung. J. Clin. Invest. 39:8–14, 1960.CrossRefPubMedCentralPubMedGoogle Scholar
  69. 69.
    Price, A. P., K. A. England, A. M. Matson, B. R. Blazar, and A. Panoskaltsis-Mortari. Development of a decellularized lung bioreactor system for bioengineering the lung: the matrix reloaded. Tissue Eng. Part A 16:2581–2591, 2010.CrossRefPubMedCentralPubMedGoogle Scholar
  70. 70.
    Rieder, E., G. Seebacher, M. T. Kasimir, E. Eichmair, B. Winter, et al. Tissue engineering of heart valves: decellularized porcine and human valve scaffolds differ importantly in residual potential to attract monocytic cells. Circulation 111:2792–2797, 2005.CrossRefPubMedGoogle Scholar
  71. 71.
    Sannes, P. L. Differences in basement membrane-associated microdomains of type I and type II pneumocytes in the rat and rabbit lung. J. Histochem. Cytochem. 32:827–833, 1984.CrossRefPubMedGoogle Scholar
  72. 72.
    Sawai, T., N. Usui, K. Sando, Y. Fukui, S. Kamata, et al. Hyaluronic acid of wound fluid in adult and fetal rabbits. J. Pediatr. Surg. 32:41–43, 1997.CrossRefPubMedGoogle Scholar
  73. 73.
    Schor, S. L. Cell proliferation and migration on collagen substrata in vitro. J. Cell Sci. 41:159–175, 1980.PubMedGoogle Scholar
  74. 74.
    Serini, G., M. L. Bochaton-Piallat, P. Ropraz, A. Geinoz, L. Borsi, et al. The fibronectin domain ED-A is crucial for myofibroblastic phenotype induction by transforming growth factor-beta1. J. Cell Biol. 142:873–881, 1998.CrossRefPubMedCentralPubMedGoogle Scholar
  75. 75.
    Shapiro, S. D., S. K. Endicott, M. A. Province, J. A. Pierce, and E. J. Campbell. Marked longevity of human lung parenchymal elastic fibers deduced from prevalence of d-aspartate and nuclear weapons-related radiocarbon. J. Clin. Invest. 87:1828–1834, 1991.CrossRefPubMedCentralPubMedGoogle Scholar
  76. 76.
    Sokocevic, D., N. R. Bonenfant, D. E. Wagner, Z. D. Borg, M. J. Lathrop, et al. The effect of age and emphysematous and fibrotic injury on the re-cellularization of de-cellularized lungs. Biomaterials 34:3256–3269, 2013.CrossRefPubMedCentralPubMedGoogle Scholar
  77. 77.
    Sorokin, L. M., F. Pausch, M. Frieser, S. Kroger, E. Ohage, et al. Developmental regulation of the laminin alpha5 chain suggests a role in epithelial and endothelial cell maturation. Dev. Biol. 189:285–300, 1997.CrossRefPubMedGoogle Scholar
  78. 78.
    Soucy, P. A., and L. H. Romer. Endothelial cell adhesion, signaling, and morphogenesis in fibroblast-derived matrix. Matrix Biol. 28:273–283, 2009.CrossRefPubMedGoogle Scholar
  79. 79.
    Stamenkovic, I. Extracellular matrix remodelling: the role of matrix metalloproteinases. J. Pathol. 200:448–464, 2003.CrossRefPubMedGoogle Scholar
  80. 80.
    Stone, K. C., R. R. Mercer, P. Gehr, B. Stockstill, and J. D. Crapo. Allometric relationships of cell numbers and size in the mammalian lung. Am. J. Respir. Cell Mol. Biol. 6:235–243, 1992.CrossRefPubMedGoogle Scholar
  81. 81.
    Sugihara, T., C. J. Martin, and J. Hildebrandt. Length-tension properties of alveolar wall in man. J. Appl. Physiol. 30:874–878, 1971.PubMedGoogle Scholar
  82. 82.
    Suki, B. Assessing the functional mechanical properties of bioengineered organs with emphasis on the lung. J. Cell. Physiol. 229:1134–1140, 2014.CrossRefPubMedGoogle Scholar
  83. 83.
    Suki, B., D. Stamenovic, and R. Hubmayr. Lung parenchymal mechanics. Compr. Physiol. 1:1317–1351, 2011.PubMedCentralPubMedGoogle Scholar
  84. 84.
    Tee, S. Y., J. Fu, C. S. Chen, and P. A. Janmey. Cell shape and substrate rigidity both regulate cell stiffness. Biophys. J . 100:L25–L27, 2011.CrossRefPubMedCentralPubMedGoogle Scholar
  85. 85.
    Toworfe, G. K., R. J. Composto, C. S. Adams, I. M. Shapiro, and P. Ducheyne. Fibronectin adsorption on surface-activated poly(dimethylsiloxane) and its effect on cellular function. J. Biomed. Mater. Res. 71A:449–461, 2004.CrossRefGoogle Scholar
  86. 86.
    Tsuchiya, T., J. L. Balestrini, J. Mendez, E. A. Calle, L. Zhao, et al. Influence of pH on Extracellular Matrix Preservation During Lung Decellularization. Tissue Eng. Part C Methods, 2014. doi: 10.1089/ten.tec.2013.0492.
  87. 87.
    Tsukahara, H., E. Noiri, M. Z. Jiang, M. Hiraoka, and M. Mayumi. Role of nitric oxide in human pulmonary microvascular endothelial cell adhesion. Life Sci. 67:1–11, 2000.CrossRefPubMedGoogle Scholar
  88. 88.
    Tuan, T. L., and F. Grinnell. Fibronectin and fibrinolysis are not required for fibrin gel contraction by human skin fibroblasts. J. Cell. Physiol. 140:577–583, 1989.CrossRefPubMedGoogle Scholar
  89. 89.
    van Kuppevelt, T. H., F. P. Cremers, J. G. Domen, H. M. van Beuningen, A. J. van den Brule, et al. Ultrastructural localization and characterization of proteoglycans in human lung alveoli. Eur. J. Cell Biol. 36:74–80, 1985.PubMedGoogle Scholar
  90. 90.
    Vorotnikova, E., D. McIntosh, A. Dewilde, J. Zhang, J. E. Reing, et al. Extracellular matrix-derived products modulate endothelial and progenitor cell migration and proliferation in vitro and stimulate regenerative healing in vivo. Matrix Biol. 29:690–700, 2010.CrossRefPubMedGoogle Scholar
  91. 91.
    Wagenseil, J. E., and R. P. Mecham. Vascular extracellular matrix and arterial mechanics. Physiol. Rev. 89:957–989, 2009.CrossRefPubMedCentralPubMedGoogle Scholar
  92. 92.
    Wagner, D. E., N. R. Bonenfant, C. S. Parsons, D. Sokocevic, E. M. Brooks, et al. Comparative decellularization and recellularization of normal versus emphysematous human lungs. Biomaterials 35:3281–3297, 2014.CrossRefPubMedCentralPubMedGoogle Scholar
  93. 93.
    Wallis, J. M., Z. D. Borg, A. B. Daly, B. Deng, B. A. Ballif, et al. Comparative assessment of detergent-based protocols for mouse lung de-cellularization and re-cellularization. Tissue Eng. Part C Methods. 18:420–432, 2012.CrossRefPubMedCentralPubMedGoogle Scholar
  94. 94.
    Wang, H. J., J. Pieper, R. Schotel, C. A. van Blitterswijk, and E. N. Lamme. Stimulation of skin repair is dependent on fibroblast source and presence of extracellular matrix. Tissue Eng. 10:1054–1064, 2004.CrossRefPubMedGoogle Scholar
  95. 95.
    Yuan, H., S. Kononov, F. S. Cavalcante, K. R. Lutchen, E. P. Ingenito, et al. Effects of collagenase and elastase on the mechanical properties of lung tissue strips. J. Appl. Physiol. 89:3–14, 2000.PubMedGoogle Scholar
  96. 96.
    Zheng, M. H., J. Chen, Y. Kirilak, C. Willers, J. Xu, et al. Porcine small intestine submucosa (SIS) is not an acellular collagenous matrix and contains porcine DNA: possible implications in human implantation. J. Biomed. Mater. Res. B Appl. Biomater. 73:61–67, 2005.CrossRefPubMedGoogle Scholar

Copyright information

© Biomedical Engineering Society 2014

Authors and Affiliations

  1. 1.Department of PathologyYale University School of MedicineNew HavenUSA
  2. 2.Department of Biomedical EngineeringYale University School of MedicineNew HavenUSA
  3. 3.Department of AnesthesiologyYale University School of MedicineNew HavenUSA

Personalised recommendations