Annals of Biomedical Engineering

, Volume 43, Issue 3, pp 616–627 | Cite as

Macrophages Modulate Engineered Human Tissues for Enhanced Vascularization and Healing

  • Kara L. Spiller
  • Donald O. Freytes
  • Gordana Vunjak-Novakovic
Article

Abstract

Tissue engineering is increasingly based on recapitulating human physiology, through integration of biological principles into engineering designs. In spite of all progress in engineering functional human tissues, we are just beginning to develop effective methods for establishing blood perfusion and controlling the inflammatory factors following implantation into the host. Functional vasculature largely determines tissue survival and function in vivo. The inflammatory response is a major regulator of vascularization and overall functionality of engineered tissues, through the activity of different types of macrophages and the cytokines they secrete. We discuss here the cell–scaffold–bioreactor systems for harnessing the inflammatory response for enhanced tissue vascularization and healing. To this end, inert scaffolds that have been considered for many decades a “gold standard” in regenerative medicine are beginning to be replaced by a new generation of “smart” tissue engineering systems designed to actively mediate tissue survival and function.

Keywords

Scaffold Vascularization Inflammatory response Tissue engineering Healing 

Abbreviations

M0

Mature and non-polarized macrophages

M1

Macrophages polarized to the inflammatory phenotype, either by in vitro stimulation or in the in vivo environment

M2

Macrophages polarized to the anti-inflammatory phenotype, either by in vitro stimulation or in the in vivo environment

M2a

Macrophages polarized through the addition of IL-4

M2c

Macrophages polarized through the addition of IL-10

PBMCs

Peripheral blood mononuclear cells

MSCs

Mesenchymal stem cells

IL

Interleukin

TNF-α

Tumor necrosis factor-alpha

TLRs

Toll-like receptors

VEGF

Vascular endothelial growth factor

bFGF

Basic fibroblast growth factor

PDGF-BB

Platelet-derived growth factor-BB

MMP9

Matrix metalloprotease-9

MCP-1

Monocyte chemoattractant protein-1

IFN-γ

Interferon-gamma

S1P

Sphingosine-1-phosphate

ECM

Extracellular matrix

TGF-β

Transforming growth factor-β

SDF-1

Stromal-derived factor 1

References

  1. 1.
    Agrawal, H., S. S. Tholpady, A. E. Capito, D. B. Drake, and A. J. Katz. Macrophage phenotypes correspond with remodeling outcomes of various acellular dermal matrices. Open J. Regen. Med. 1:51–59, 2012.CrossRefGoogle Scholar
  2. 2.
    Alexander, K. A., M. K. Chang, E. R. Maylin, T. Kohler, R. Muller, A. C. Wu, N. Van Rooijen, M. J. Sweet, D. A. Hume, L. J. Raggatt, and A. R. Pettit. Osteal macrophages promote in vivo intramembranous bone healing in a mouse tibial injury model. J. Bone Miner. Res. 26:1517–1532, 2011.CrossRefPubMedGoogle Scholar
  3. 3.
    Anghelina, M., P. Krishnan, L. Moldovan, and N. I. Moldovan. Monocytes and macrophages form branched cell columns in matrigel: implications for a role in neovascularization. Stem Cells Dev. 13:665–676, 2004.CrossRefPubMedGoogle Scholar
  4. 4.
    Anghelina, M., P. Krishnan, L. Moldovan, and N. I. Moldovan. Monocytes/macrophages cooperate with progenitor cells during neovascularization and tissue repair: conversion of cell columns into fibrovascular bundles. Am. J. Pathol. 168:529–541, 2006.CrossRefPubMedCentralPubMedGoogle Scholar
  5. 5.
    Arendt, L. M., J. McCready, P. J. Keller, D. D. Baker, S. P. Naber, V. Seewaldt, and C. Kuperwasser. Obesity promotes breast cancer by CCL2-mediated macrophage recruitment and angiogenesis. Cancer Res. 73:6080–6093, 2013.CrossRefPubMedGoogle Scholar
  6. 6.
    Arinzeh, T. L., S. J. Peter, M. P. Archambault, C. van den Bos, S. Gordon, K. Kraus, A. Smith, and S. Kadiyala. Allogeneic mesenchymal stem cells regenerate bone in a critical-sized canine segmental defect. J. Bone Joint Surg. Am. 85-A:1927–1935, 2003.PubMedGoogle Scholar
  7. 7.
    Arnold, L., A. Henry, F. Poron, Y. Baba-Amer, N. van Rooijen, A. Plonquet, R. K. Gherardi, and B. Chazaud. Inflammatory monocytes recruited after skeletal muscle injury switch into antiinflammatory macrophages to support myogenesis. J. Exp. Med. 204:1057–1069, 2007.CrossRefPubMedCentralPubMedGoogle Scholar
  8. 8.
    Arras, M., W. D. Ito, D. Scholz, B. Winkler, J. Schaper, and W. Schaper. Monocyte activation in angiogenesis and collateral growth in the rabbit hindlimb. J. Clin. Investig. 101:40–50, 1998.CrossRefPubMedCentralPubMedGoogle Scholar
  9. 9.
    Ashcroft, G. S., X. Yang, A. B. Glick, M. Weinstein, J. L. Letterio, D. E. Mizel, M. Anzano, T. Greenwell-Wild, S. M. Wahl, C. Deng, and A. B. Roberts. Mice lacking Smad3 show accelerated wound healing and an impaired local inflammatory response. Nat. Cell Biol. 1:260–266, 1999.CrossRefPubMedGoogle Scholar
  10. 10.
    Auwerx, J. The human leukemia cell line, THP-1: a multifacetted model for the study of monocyte-macrophage differentiation. Experientia 47:22–31, 1991.CrossRefPubMedGoogle Scholar
  11. 11.
    Awojoodu, A. O., M. E. Ogle, L. S. Sefcik, D. T. Bowers, K. Martin, K. L. Brayman, K. R. Lynch, S. M. Peirce-Cottler, and E. Botchwey. Sphingosine 1-phosphate receptor 3 regulates recruitment of anti-inflammatory monocytes to microvessels during implant arteriogenesis. Proc. Natl. Acad. Sci. USA 110:13785–13790, 2013.CrossRefPubMedCentralPubMedGoogle Scholar
  12. 12.
    Badylak, S. F., J. E. Valentin, A. K. Ravindra, G. P. McCabe, and A. M. Stewart-Akers. Macrophage phenotype as a determinant of biologic scaffold remodeling. Tissue Eng. Part A 14:1835–1842, 2008.CrossRefPubMedGoogle Scholar
  13. 13.
    Bartunek, J., A. Behfar, M. Vanderheyden, W. Wijns, and A. Terzic. Mesenchymal stem cells and cardiac repair: principles and practice. J. Cardiovasc. Transl. Res. 1:115–119, 2008.CrossRefPubMedGoogle Scholar
  14. 14.
    Bota, P. C., A. M. Collie, P. Puolakkainen, R. B. Vernon, E. H. Sage, B. D. Ratner, and P. S. Stayton. Biomaterial topography alters healing in vivo and monocyte/macrophage activation in vitro. J. Biomed. Mater. Res. A 95:649–657, 2010.CrossRefPubMedCentralPubMedGoogle Scholar
  15. 15.
    Brown, B. N., R. Londono, S. Tottey, L. Zhang, K. A. Kukla, M. T. Wolf, K. A. Daly, J. E. Reing, and S. F. Badylak. Macrophage phenotype as a predictor of constructive remodeling following the implantation of biologically derived surgical mesh materials. Acta Biomater. 8:978–987, 2012.CrossRefPubMedCentralPubMedGoogle Scholar
  16. 16.
    Brown, B. N., J. E. Valentin, A. M. Stewart-Akers, G. P. McCabe, and S. F. Badylak. Macrophage phenotype and remodeling outcomes in response to biologic scaffolds with and without a cellular component. Biomaterials 30:1482–1491, 2009.CrossRefPubMedCentralPubMedGoogle Scholar
  17. 17.
    Brudno, Y., A. B. Ennett-Shepard, R. R. Chen, M. Aizenberg, and D. J. Mooney. Enhancing microvascular formation and vessel maturation through temporal control over multiple pro-angiogenic and pro-maturation factors. Biomaterials 34:9201–9209, 2013.CrossRefPubMedGoogle Scholar
  18. 18.
    Brunelli, S., and P. Rovere-Querini. The immune system and the repair of skeletal muscle. Pharmacol. Res. 58:117–121, 2008.CrossRefPubMedGoogle Scholar
  19. 19.
    Cao, X., D. Shen, M. M. Patel, J. Tuo, T. M. Johnson, T. W. Olsen, and C. C. Chan. Macrophage polarization in the maculae of age-related macular degeneration: a pilot study. Pathol. Int. 61:528–535, 2011.CrossRefPubMedCentralPubMedGoogle Scholar
  20. 20.
    Chen, A. A., D. K. Thomas, L. L. Ong, R. E. Schwartz, T. R. Golub, and S. N. Bhatia. Humanized mice with ectopic artificial liver tissues. Proc. Natl. Acad. Sci. USA 108:11842–11847, 2011.CrossRefPubMedCentralPubMedGoogle Scholar
  21. 21.
    Cho, D. I., M. R. Kim, H. Y. Jeong, H. C. Jeong, M. H. Jeong, S. H. Yoon, Y. S. Kim, and Y. Ahn. Mesenchymal stem cells reciprocally regulate the M1/M2 balance in mouse bone marrow-derived macrophages. Exp. Mol. Med. 46:e70, 2014.CrossRefPubMedCentralPubMedGoogle Scholar
  22. 22.
    Conejo-Garcia, J. R., R. J. Buckanovich, F. Benencia, M. C. Courreges, S. C. Rubin, R. G. Carroll, and G. Coukos. Vascular leukocytes contribute to tumor vascularization. Blood 105:679–681, 2005.CrossRefPubMedGoogle Scholar
  23. 23.
    Correia, C., W. L. Grayson, M. Park, D. Hutton, B. Zhou, X. E. Guo, L. Niklason, R. A. Sousa, R. L. Reis, and G. Vunjak-Novakovic. In vitro model of vascularized bone: synergizing vascular development and osteogenesis. PLoS ONE 6:e28352, 2011.CrossRefPubMedCentralPubMedGoogle Scholar
  24. 24.
    Costa, C., J. Incio, and R. Soares. Angiogenesis and chronic inflammation: cause or consequence? Angiogenesis 10:149–166, 2007.CrossRefPubMedGoogle Scholar
  25. 25.
    Das, A., C. E. Segar, B. B. Hughley, D. T. Bowers, and E. A. Botchwey. The promotion of mandibular defect healing by the targeting of S1P receptors and the recruitment of alternatively activated macrophages. Biomaterials 34:9853–9862, 2013.CrossRefPubMedCentralPubMedGoogle Scholar
  26. 26.
    Dayan, V., G. Yannarelli, F. Billia, P. Filomeno, X. H. Wang, J. E. Davies, and A. Keating. Mesenchymal stromal cells mediate a switch to alternatively activated monocytes/macrophages after acute myocardial infarction. Basic Res. Cardiol. 106:1299–1310, 2011.CrossRefPubMedGoogle Scholar
  27. 27.
    DeFalco, T., I. Bhattacharya, A. V. Williams, D. M. Sams, and B. Capel. Yolk-sac-derived macrophages regulate fetal testis vascularization and morphogenesis. Proc. Natl. Acad. Sci. USA 111:E2384–E2393, 2014.CrossRefPubMedCentralPubMedGoogle Scholar
  28. 28.
    Fantin, A., J. M. Vieira, G. Gestri, L. Denti, Q. Schwarz, S. Prykhozhij, F. Peri, S. W. Wilson, and C. Ruhrberg. Tissue macrophages act as cellular chaperones for vascular anastomosis downstream of VEGF-mediated endothelial tip cell induction. Blood 116:829–840, 2010.CrossRefPubMedCentralPubMedGoogle Scholar
  29. 29.
    Fishman, J. M., M. W. Lowdell, L. Urbani, T. Ansari, A. J. Burns, M. Turmaine, J. North, P. Sibbons, A. M. Seifalian, K. J. Wood, M. A. Birchall, and P. De Coppi. Immunomodulatory effect of a decellularized skeletal muscle scaffold in a discordant xenotransplantation model. Proc. Natl. Acad. Sci. USA 110:14360–14365, 2013.CrossRefPubMedCentralPubMedGoogle Scholar
  30. 30.
    Frangogiannis, N. G. The immune system and cardiac repair. Pharmacol. Res. 58:88–111, 2008.CrossRefPubMedCentralPubMedGoogle Scholar
  31. 31.
    Frescaline, G., T. Bouderlique, L. Mansoor, G. Carpentier, B. Baroukh, F. Sineriz, M. Trouillas, J. L. Saffar, J. Courty, J. J. Lataillade, D. Papy-Garcia, and P. Albanese. Glycosaminoglycan mimetic associated to human mesenchymal stem cell-based scaffolds inhibit ectopic bone formation, but induce angiogenesis in vivo. Tissue Eng. Part A 19:1641–1653, 2013.CrossRefPubMedCentralPubMedGoogle Scholar
  32. 32.
    Freytes, D. O., J. W. Kang, I. Marcos-Campos, and G. Vunjak-Novakovic. Macrophages modulate the viability and growth of human mesenchymal stem cells. J. Cell. Biochem. 114:220–229, 2013.CrossRefPubMedGoogle Scholar
  33. 33.
    Freytes, D. O., L. Santambrogio, and G. Vunjak-Novakovic. Optimizing dynamic interactions between a cardiac patch and inflammatory host cells. Cells Tissues Organs 195:171–182, 2012.CrossRefPubMedGoogle Scholar
  34. 34.
    Fuentes-Duculan, J., M. Suarez-Farinas, L. C. Zaba, K. E. Nograles, K. C. Pierson, H. Mitsui, C. A. Pensabene, J. Kzhyshkowska, J. G. Krueger, and M. A. Lowes. A subpopulation of CD163-positive macrophages is classically activated in psoriasis. J. Investig. Dermatol. 130:2412–2422, 2010.CrossRefPubMedCentralPubMedGoogle Scholar
  35. 35.
    Glass, G. E., J. K. Chan, A. Freidin, M. Feldmann, N. J. Horwood, and J. Nanchahal. TNF-alpha promotes fracture repair by augmenting the recruitment and differentiation of muscle-derived stromal cells. Proc. Natl. Acad. Sci. USA 108:1585–1590, 2011.CrossRefPubMedCentralPubMedGoogle Scholar
  36. 36.
    Godier-Furnemont, A. F., T. P. Martens, M. S. Koeckert, L. Wan, J. Parks, K. Arai, G. Zhang, B. Hudson, S. Homma, and G. Vunjak-Novakovic. Composite scaffold provides a cell delivery platform for cardiovascular repair. Proc. Natl. Acad. Sci. USA 108:7974–7979, 2011.CrossRefPubMedCentralPubMedGoogle Scholar
  37. 37.
    Hibino, N., T. Yi, D. R. Duncan, A. Rathore, E. Dean, Y. Naito, A. Dardik, T. Kyriakides, J. Madri, J. S. Pober, T. Shinoka, and C. K. Breuer. A critical role for macrophages in neovessel formation and the development of stenosis in tissue-engineered vascular grafts. FASEB J 25:4253–4263, 2011.CrossRefPubMedCentralPubMedGoogle Scholar
  38. 38.
    Hirose, N., H. Maeda, M. Yamamoto, Y. Hayashi, G. H. Lee, L. Chen, G. Radhakrishnan, P. Rao, and S. Sasaguri. The local injection of peritoneal macrophages induces neovascularization in rat ischemic hind limb muscles. Cell Transplant. 17:211–222, 2008.CrossRefPubMedGoogle Scholar
  39. 39.
    Hisatome, T., Y. Yasunaga, S. Yanada, Y. Tabata, Y. Ikada, and M. Ochi. Neovascularization and bone regeneration by implantation of autologous bone marrow mononuclear cells. Biomaterials 26:4550–4556, 2005.CrossRefPubMedGoogle Scholar
  40. 40.
    Hutter, R., W. S. Speidl, C. Valdiviezo, B. Sauter, R. Corti, V. Fuster, and J. Badimon. J. Macrophages transmit potent proangiogenic effects of oxLDL in vitro and in vivo involving HIF-1alpha activation: a novel aspect of angiogenesis in atherosclerosis. J. Cardiovasc. Transl. Res. 6:558–569, 2013.CrossRefPubMedCentralPubMedGoogle Scholar
  41. 41.
    Jetten, N., S. Verbruggen, M. J. Gijbels, M. J. Post, M. P. De Winther, and M. Donners. M. Anti-inflammatory M2, but not pro-inflammatory M1 macrophages promote angiogenesis in vivo. Angiogenesis 17:109–118, 2014.CrossRefPubMedGoogle Scholar
  42. 42.
    Khallou-Laschet, J., A. Varthaman, G. Fornasa, C. Compain, A. T. Gaston, M. Clement, M. Dussiot, O. Levillain, S. Graff-Dubois, A. Nicoletti, and G. Caligiuri. Macrophage plasticity in experimental atherosclerosis. PLoS ONE 5:e8852, 2010.CrossRefPubMedCentralPubMedGoogle Scholar
  43. 43.
    Kigerl, K. A., J. C. Gensel, D. P. Ankeny, J. K. Alexander, D. J. Donnelly, and P. G. Popovich. Identification of two distinct macrophage subsets with divergent effects causing either neurotoxicity or regeneration in the injured mouse spinal cord. J. Neurosci. 29:13435–13444, 2009.CrossRefPubMedCentralPubMedGoogle Scholar
  44. 44.
    Kim, Y. H., H. Furuya, and Y. Tabata. Enhancement of bone regeneration by dual release of a macrophage recruitment agent and platelet-rich plasma from gelatin hydrogels. Biomaterials 35:214–224, 2014.CrossRefPubMedGoogle Scholar
  45. 45.
    Kitajewski, J. Wnts heal by restraining angiogenesis. Blood 121:2381–2382, 2013.CrossRefPubMedCentralPubMedGoogle Scholar
  46. 46.
    Kubota, Y., K. Takubo, T. Shimizu, H. Ohno, K. Kishi, M. Shibuya, H. Saya, and T. Suda. M-CSF inhibition selectively targets pathological angiogenesis and lymphangiogenesis. J. Exp. Med. 206:1089–1102, 2009.CrossRefPubMedCentralPubMedGoogle Scholar
  47. 47.
    Lambert, J. M., E. F. Lopez, and M. L. Lindsey. Macrophage roles following myocardial infarction. Int. J. Cardiol. 130:147–158, 2008.CrossRefPubMedCentralPubMedGoogle Scholar
  48. 48.
    Lolmede, K., L. Campana, M. Vezzoli, L. Bosurgi, R. Tonlorenzi, E. Clementi, M. E. Bianchi, G. Cossu, A. A. Manfredi, S. Brunelli, and P. Rovere-Querini. Inflammatory and alternatively activated human macrophages attract vessel-associated stem cells, relying on separate HMGB1- and MMP-9-dependent pathways. J. Leukoc. Biol. 85:779–787, 2009.CrossRefPubMedGoogle Scholar
  49. 49.
    Low-Marchelli, J. M., V. C. Ardi, E. A. Vizcarra, N. van Rooijen, J. P. Quigley, and J. Yang. Twist1 induces CCL2 and recruits macrophages to promote angiogenesis. Cancer Res. 73:662–671, 2013.CrossRefPubMedCentralPubMedGoogle Scholar
  50. 50.
    Lyons, F. G., A. A. Al-Munajjed, S. M. Kieran, M. E. Toner, C. M. Murphy, G. P. Duffy, and F. J. O’Brien. The healing of bony defects by cell-free collagen-based scaffolds compared to stem cell-seeded tissue engineered constructs. Biomaterials 31:9232–9243, 2010.CrossRefPubMedGoogle Scholar
  51. 51.
    Madden, L. R., D. J. Mortisen, E. M. Sussman, S. K. Dupras, J. A. Fugate, J. L. Cuy, K. D. Hauch, M. A. Laflamme, C. E. Murry, and B. D. Ratner. Proangiogenic scaffolds as functional templates for cardiac tissue engineering. Proc. Natl. Acad. Sci. USA 107:15211–15216, 2010.CrossRefPubMedCentralPubMedGoogle Scholar
  52. 52.
    Mantovani, A., S. K. Biswas, M. R. Galdiero, A. Sica, and M. Locati. Macrophage plasticity and polarization in tissue repair and remodelling. J. Pathol. 229:176–185, 2013.CrossRefPubMedGoogle Scholar
  53. 53.
    Mantovani, A., A. Sica, S. Sozzani, P. Allavena, A. Vecchi, and M. Locati. The chemokine system in diverse forms of macrophage activation and polarization. Trends Immunol. 25:677–686, 2004.CrossRefPubMedGoogle Scholar
  54. 54.
    Mantovani, A., S. Sozzani, M. Locati, P. Allavena, and A. Sica. Macrophage polarization: tumor-associated macrophages as a paradigm for polarized M2 mononuclear phagocytes. Trends Immunol. 23:549–555, 2002.CrossRefPubMedGoogle Scholar
  55. 55.
    Martinez, F. O., S. Gordon, M. Locati, and A. Mantovani. Transcriptional profiling of the human monocyte-to-macrophage differentiation and polarization: new molecules and patterns of gene expression. J. Immunol. 177:7303–7311, 2006.Google Scholar
  56. 56.
    Mathieu, M., J. Bartunek, B. El Oumeiri, K. Touihri, I. Hadad, P. Thoma, T. Metens, A. M. da Costa, M. Mahmoudabady, D. Egrise, D. Blocklet, N. Mazouz, R. Naeije, G. Heyndrickx, and K. McEntee. Cell therapy with autologous bone marrow mononuclear stem cells is associated with superior cardiac recovery compared with use of nonmodified mesenchymal stem cells in a canine model of chronic myocardial infarction. J. Thoracic Cardiovasc. Surg. 138:646–653, 2009.CrossRefGoogle Scholar
  57. 57.
    Medina, R. J., C. L. O’Neill, T. M. O’Doherty, H. Knott, J. Guduric-Fuchs, T. A. Gardiner, and A. W. Stitt. Myeloid angiogenic cells act as alternative M2 macrophages and modulate angiogenesis through interleukin-8. Mol. Med. 17:1045–1055, 2011.CrossRefPubMedCentralPubMedGoogle Scholar
  58. 58.
    Mikos, A. G., L. V. McIntire, J. M. Anderson, and J. E. Babensee. Host response to tissue engineered devices. Adv. Drug Deliv. Rev. 33:111–139, 1998.CrossRefPubMedGoogle Scholar
  59. 59.
    Mokarram, N., A. Merchant, V. Mukhatyar, G. Patel, and R. V. Bellamkonda. Effect of modulating macrophage phenotype on peripheral nerve repair. Biomaterials 33:8793–8801, 2012.CrossRefPubMedCentralPubMedGoogle Scholar
  60. 60.
    Mosser, D. M., and J. P. Edwards. Exploring the full spectrum of macrophage activation. Nat. Rev. Immunol. 8:958–969, 2008.CrossRefPubMedCentralPubMedGoogle Scholar
  61. 61.
    Nahrendorf, M., F. K. Swirski, E. Aikawa, L. Stangenberg, T. Wurdinger, J.-L. Figueiredo, P. Libby, R. Weissleder, and M. J. Pittet. The healing myocardium sequentially mobilizes two monocyte subsets with divergent and complementary functions. J. Exp. Med. 204:3037–3047, 2007Google Scholar
  62. 62.
    Nahrendorf, M., F. K. Swirski, E. Aikawa, L. Stangenberg, T. Wurdinger, J. L. Figueiredo, P. Libby, R. Weissleder, and M. J. Pittet. The healing myocardium sequentially mobilizes two monocyte subsets with divergent and complementary functions. J. Exp. Med. 204:3037–3047, 2007.CrossRefPubMedCentralPubMedGoogle Scholar
  63. 63.
    Outtz, H. H., I. W. Tattersall, N. M. Kofler, N. Steinbach, and J. Kitajewski. Notch1 controls macrophage recruitment and Notch signaling is activated at sites of endothelial cell anastomosis during retinal angiogenesis in mice. Blood 118:3436–3439, 2011.CrossRefPubMedCentralPubMedGoogle Scholar
  64. 64.
    Peng, B., J. Hao, S. Hou, W. Wu, D. Jiang, X. Fu, and Y. Yang. Possible pathogenesis of painful intervertebral disc degeneration. Spine (Phila Pa 1976) 31:560–566, 2006.CrossRefGoogle Scholar
  65. 65.
    Petrie Aronin, C. E., S. J. Shin, K. B. Naden, P. D. Rios, Jr., L. S. Sefcik, S. R. Zawodny, N. D. Bagayoko, Q. Cui, Y. Khan, and E. A. Botchwey. The enhancement of bone allograft incorporation by the local delivery of the sphingosine 1-phosphate receptor targeted drug FTY720. Biomaterials 31:6417–6424, 2010.CrossRefPubMedGoogle Scholar
  66. 66.
    Repnik, U., M. Knezevic, and M. Jeras. Simple and cost-effective isolation of monocytes from buffy coats. J. Immunol. Methods 278:283–292, 2003.CrossRefPubMedGoogle Scholar
  67. 67.
    Roh, J. D., R. Sawh-Martinez, M. P. Brennan, S. M. Jay, L. Devine, D. A. Rao, T. Yi, T. L. Mirensky, A. Nalbandian, B. Udelsman, N. Hibino, T. Shinoka, W. M. Saltzman, E. Snyder, T. R. Kyriakides, J. S. Pober, and C. K. Breuer. Tissue-engineered vascular grafts transform into mature blood vessels via an inflammation-mediated process of vascular remodeling. Proc. Natl. Acad. Sci. USA 107:4669–4674, 2010.CrossRefPubMedCentralPubMedGoogle Scholar
  68. 68.
    Sainson, R. C., D. A. Johnston, H. C. Chu, M. T. Holderfield, M. N. Nakatsu, S. P. Crampton, J. Davis, E. Conn, and C. C. Hughes. TNF primes endothelial cells for angiogenic sprouting by inducing a tip cell phenotype. Blood 111:4997–5007, 2008.CrossRefPubMedCentralPubMedGoogle Scholar
  69. 69.
    Sakurai, E., A. Anand, B. K. Ambati, N. van Rooijen, and J. Ambati. Macrophage depletion inhibits experimental choroidal neovascularization. Investig. Ophthalmol. Vis. Sci. 44:3578–3585, 2003.CrossRefGoogle Scholar
  70. 70.
    Sefton, M. V., J. E. Babensee, and K. A. Woodhouse. Innate and adaptive immune responses in tissue engineering. Semin. Immunol. 20:83–85, 2008.CrossRefPubMedGoogle Scholar
  71. 71.
    Seok, J., H. S. Warren, A. G. Cuenca, M. N. Mindrinos, H. V. Baker, W. Xu, D. R. Richards, G. P. McDonald-Smith, H. Gao, L. Hennessy, C. C. Finnerty, C. M. Lopez, S. Honari, E. E. Moore, J. P. Minei, J. Cuschieri, P. E. Bankey, J. L. Johnson, J. Sperry, A. B. Nathens, T. R. Billiar, M. A. West, M. G. Jeschke, M. B. Klein, R. L. Gamelli, N. S. Gibran, B. H. Brownstein, C. Miller-Graziano, S. E. Calvano, P. H. Mason, J. P. Cobb, L. G. Rahme, S. F. Lowry, R. V. Maier, L. L. Moldawer, D. N. Herndon, R. W. Davis, W. Xiao, and R. G. Tompkins. Genomic responses in mouse models poorly mimic human inflammatory diseases. Proc. Natl. Acad. Sci. USA 110:3507–3512, 2013.CrossRefPubMedCentralPubMedGoogle Scholar
  72. 72.
    Shultz, L. D., M. A. Brehm, J. V. Garcia-Martinez, and D. L. Greiner. Humanized mice for immune system investigation: progress, promise and challenges. Nat. Rev. Immunol. 12:786–798, 2012.CrossRefPubMedCentralPubMedGoogle Scholar
  73. 73.
    Shultz, L. D., F. Ishikawa, and D. L. Greiner. Humanized mice in translational biomedical research. Nat. Rev. Immunol. 7:118–130, 2007.CrossRefPubMedGoogle Scholar
  74. 74.
    Sindrilaru, A., T. Peters, S. Wieschalka, C. Baican, A. Baican, H. Peter, A. Hainzl, S. Schatz, Y. Qi, A. Schlecht, J. M. Weiss, M. Wlaschek, C. Sunderkotter, and K. Scharffetter-Kochanek. An unrestrained proinflammatory M1 macrophage population induced by iron impairs wound healing in humans and mice. J. Clin. Investig. 121:985–997, 2011.CrossRefPubMedCentralPubMedGoogle Scholar
  75. 75.
    Spiller, K. L., R. R. Anfang, K. J. Spiller, J. Ng, K. R. Nakazawa, J. W. Daulton, and G. Vunjak-Novakovic. The role of macrophage phenotype in vascularization of tissue engineering scaffolds. Biomaterials 35:4477–4488, 2014.CrossRefPubMedGoogle Scholar
  76. 76.
    Spiller, K. L., and G. Vunjak-Novakovic. Clinical translation of controlled protein delivery systems for tissue engineering. Drug Deliv. Transl. Res. 2013. doi:10.1007/s13346-013-0135-1.
  77. 77.
    Stefater, 3rd, J. A., S. Rao, K. Bezold, A. C. Aplin, R. F. Nicosia, J. W. Pollard, N. Ferrara, and R. A. Lang. Macrophage Wnt-Calcineurin-Flt1 signaling regulates mouse wound angiogenesis and repair. Blood 121:2574–2578, 2013.CrossRefPubMedCentralPubMedGoogle Scholar
  78. 78.
    Sung, J. H., and M. L. Shuler. Microtechnology for mimicking in vivo tissue environment. Ann. Biomed. Eng. 40:1289–1300, 2012.CrossRefPubMedGoogle Scholar
  79. 79.
    Sussman, E. M., M. C. Halpin, J. Muster, R. T. Moon, and B. D. Ratner. Porous implants modulate healing and induce shifts in local macrophage polarization in the foreign body reaction. Ann. Biomed. Eng. 42:1508–1516, 2014.CrossRefPubMedGoogle Scholar
  80. 80.
    Szekanecz, Z., and A. E. Koch. Mechanisms of Disease: angiogenesis in inflammatory diseases. Nat. Clin. Pract. Rheumatol. 3:635–643, 2007.CrossRefPubMedGoogle Scholar
  81. 81.
    Tasso, R., A. Augello, M. Carida, F. Postiglione, M. G. Tibiletti, B. Bernasconi, S. Astigiano, F. Fais, M. Truini, R. Cancedda, and G. Pennesi. Development of sarcomas in mice implanted with mesenchymal stem cells seeded onto bioscaffolds. Carcinogenesis 30:150–157, 2009.CrossRefPubMedGoogle Scholar
  82. 82.
    Tasso, R., and G. Pennesi. When stem cells meet immunoregulation. Int. Immunopharmacol. 9:596–598, 2009.CrossRefPubMedGoogle Scholar
  83. 83.
    Tolg, C., S. R. Hamilton, E. Zalinska, L. McCulloch, R. Amin, N. Akentieva, F. Winnik, R. Savani, D. J. Bagli, L. G. Luyt, M. K. Cowman, J. B. McCarthy, and E. Turley. A. A RHAMM mimetic peptide blocks hyaluronan signaling and reduces inflammation and fibrogenesis in excisional skin wounds. Am. J. Pathol. 181:1250–1270, 2012.CrossRefPubMedCentralPubMedGoogle Scholar
  84. 84.
    Tous, E., H. M. Weber, M. H. Lee, K. J. Koomalsingh, T. Shuto, N. Kondo, J. H. Gorman, 3rd, D. Lee, R. C. Gorman, and J. A. Burdick. Tunable hydrogel-microsphere composites that modulate local inflammation and collagen bulking. Acta Biomater. 8:3218–3227, 2012.CrossRefPubMedCentralPubMedGoogle Scholar
  85. 85.
    Troidl, C., G. Jung, K. Troidl, J. Hoffmann, H. Mollmann, H. Nef, W. Schaper, C. W. Hamm, and T. Schmitz-Rixen. The temporal and spatial distribution of macrophage subpopulations during arteriogenesis. Curr. Vasc. Pharmacol. 11:5–12, 2013.CrossRefPubMedGoogle Scholar
  86. 86.
    Troidl, C., H. Mollmann, H. Nef, F. Masseli, S. Voss, S. Szardien, M. Willmer, A. Rolf, J. Rixe, K. Troidl, S. Kostin, C. Hamm, and A. Elsasser. Classically and alternatively activated macrophages contribute to tissue remodelling after myocardial infarction. J. Cell Mol. Med. 13:3485–3496, 2009.CrossRefPubMedGoogle Scholar
  87. 87.
    Vunjak-Novakovic, G., and D. T. Scadden. Biomimetic platforms for human stem cell research. Cell Stem Cell 8:252–261, 2011.CrossRefPubMedCentralPubMedGoogle Scholar
  88. 88.
    Wang, Y., Y. P. Wang, G. Zheng, V. W. Lee, L. Ouyang, D. H. Chang, D. Mahajan, J. Coombs, Y. M. Wang, S. I. Alexander, and D. C. Harris. Ex vivo programmed macrophages ameliorate experimental chronic inflammatory renal disease. Kidney Int. 72:290–299, 2007.CrossRefPubMedGoogle Scholar
  89. 89.
    Willenborg, S., T. Lucas, G. van Loo, J. A. Knipper, T. Krieg, I. Haase, B. Brachvogel, M. Hammerschmidt, A. Nagy, N. Ferrara, M. Pasparakis, and S. A. Eming. CCR2 recruits an inflammatory macrophage subpopulation critical for angiogenesis in tissue repair. Blood 120:613–625, 2012.CrossRefPubMedGoogle Scholar
  90. 90.
    Ye, X., L. Lu, M. E. Kolewe, H. Park, B. L. Larson, E. S. Kim, and L. E. Freed. A biodegradable microvessel scaffold as a framework to enable vascular support of engineered tissues. Biomaterials 34:10007–10015, 2013.CrossRefPubMedCentralPubMedGoogle Scholar
  91. 91.
    Ytrehus, K. The ischemic heart–experimental models. Pharmacol. Res. 42:193–203, 2000.CrossRefPubMedGoogle Scholar
  92. 92.
    Zajac, E., B. Schweighofer, T. A. Kupriyanova, A. Juncker-Jensen, P. Minder, J. P. Quigley, and E. I. Deryugina. Angiogenic capacity of M1- and M2-polarized macrophages is determined by the levels of TIMP-1 complexed with their secreted proMMP-9. Blood 122:4054–4067, 2013.CrossRefPubMedCentralPubMedGoogle Scholar
  93. 93.
    Zhang, L., Z. Cao, T. Bai, L. Carr, J. R. Ella-Menye, C. Irvin, B. D. Ratner, and S. Jiang. Zwitterionic hydrogels implanted in mice resist the foreign-body reaction. Nat. Biotechnol. 31:553–556, 2013.CrossRefPubMedGoogle Scholar
  94. 94.
    Zhang, S. J., H. Zhang, Y. J. Wei, W. J. Su, Z. K. Liao, M. Hou, J. Y. Zhou, and S. S. Hu. Adult endothelial progenitor cells from human peripheral blood maintain monocyte/macrophage function throughout in vitro culture. Cell Res. 16:577–584, 2006.CrossRefPubMedGoogle Scholar

Copyright information

© Biomedical Engineering Society 2014

Authors and Affiliations

  • Kara L. Spiller
    • 1
  • Donald O. Freytes
    • 2
  • Gordana Vunjak-Novakovic
    • 3
  1. 1.Drexel UniversityPhiladelphiaUSA
  2. 2.New York Stem Cell Foundation Research InstituteNew YorkUSA
  3. 3.Mikati Foundation Professor of Biomedical Engineering and Medical SciencesColumbia UniversityNew YorkUSA

Personalised recommendations