Skip to main content

Therapeutic Effects of Functional Electrical Stimulation on Gait in Individuals Post-Stroke

Abstract

Functional electrical stimulation (FES) to lower extremity (LE) muscles is used by individuals post-stroke as an alternative to mechanical orthotic devices during gait or as a training modality during rehabilitation. Technological developments which improve the feasibility, accessibility and effectiveness of FES systems as orthotic and training devices, highlight the potential of FES for rehabilitating LE function in individuals post-stroke. This study presents a systematic review of the carryover effects of LE FES to motor performance when stimulation is not applied (therapeutic effects) in subjects post-stroke. A description of advances in FES technologies, with an emphasis on systems designed to promote LE function is included, and mechanisms that may be associated with the observed therapeutic effects are discussed. Eligible studies were reviewed for methodological quality, population, intervention and outcome characteristics. Therapeutic effects of FES were consistently demonstrated at the body function and activity levels when it was used as a training modality. Compared to matched treatments that did not incorporate FES, no definite conclusions can be drawn regarding the superiority of FES. When FES was used as an alternative to an orthotic device, it had no superior therapeutic effects at the activity level, yet patients still seemed to prefer it.

This is a preview of subscription content, access via your institution.

References

  1. Ambrosini, E., S. Ferrante, A. Pedrocchi, G. Ferrigno, and F. Molteni. Cycling induced by electrical stimulation improves motor recovery in postacute hemiparetic patients: a randomized controlled trial. Stroke. 42:1068–1073, 2011.

    Article  PubMed  Google Scholar 

  2. Ambrosini, E., S. Ferrante, T. Schauer, C. Klauer, M. Gaffuri, G. Ferrigno, and A. Pedrocchi. A myocontrolled neuroprosthesis integrated with a passive exoskeleton to support upper limb activities. J Electromyogr Kinesiol. 24:307–317, 2014.

    Article  PubMed  Google Scholar 

  3. Bergquist, A. J., J. M. Clair, O. Lagerquist, C. S. Mang, Y. Okuma, and D. F. Collins. Neuromuscular electrical stimulation: implications of the electrically evoked sensory volley. Eur J Appl Physiol. 111:2409–2426, 2011.

    Article  CAS  PubMed  Google Scholar 

  4. Bethoux, F., H. L. Rogers, K. J. Nolan, G. M. Abrams, T. M. Annaswamy, M. Brandstater, et al. The effects of peroneal nerve functional electrical stimulation versus ankle-foot orthosis in patients with chronic stroke: a randomized controlled trial. Neurorehabil Neural Repair. 28:688-697, 2014.

  5. Bosch, P. R., J. E. Harris, and K. Wing. Review of therapeutic electrical stimulation for dorsiflexion assist and orthotic substitution from the american congress of rehabilitation medicine stroke movement interventions subcommittee. Arch Phys Med Rehabil. 95:390–396, 2014.

    Article  PubMed  Google Scholar 

  6. Bulley, C., J. Shiels, K. Wilkie, and L. Salisbury. User experiences, preferences and choices relating to functional electrical stimulation and ankle foot orthoses for foot-drop after stroke. Physiotherapy. 97:226–233, 2011.

    Article  PubMed  Google Scholar 

  7. Burridge, J. H., M. Haugland, B. Larsen, R. M. Pickering, N. Svaneborg, H. K. Iversen, P. B. Christensen, J. Haase, J. Brennum, and T. Sinkjaer. Phase II trial to evaluate the ActiGait implanted drop-foot stimulator in established hemiplegia. J Rehabil Med. 39:212–218, 2007.

    Article  PubMed  Google Scholar 

  8. Burridge, J. H., P. N. Taylor, S. A. Hagan, D. E. Wood, and I. D. Swain. The effects of common peroneal stimulation on the effort and speed of walking: a randomized controlled trial with chronic hemiplegic patients. Clin Rehabil. 11:201–210, 1997.

    Article  CAS  PubMed  Google Scholar 

  9. Centre for Evidence-Based Physiotherapy. PEDro physiotherapy evidence database. http://ptwww.cchs.usyd.edu.au/. Updated September 1, 2014. Accessed July 2014.

  10. Charlton, C. S., M. C. Ridding, P. D. Thompson, and T. S. Miles. Prolonged peripheral nerve stimulation induces persistent changes in excitability of human motor cortex. J Neurol Sci. 208:79–85, 2003.

    Article  PubMed  Google Scholar 

  11. Christensen, M. S., and M. J. Grey. Modulation of proprioceptive feedback during functional electrical stimulation: an fMRI study. Eur J Neurosci. 37:1766–1778, 2013.

    Article  PubMed  Google Scholar 

  12. Cioncoloni, D., J. M. Veerbeek, E. E. van Wegen, and G. Kwakkel. Is it possible to accurately predict outcome of a drop-foot in patients admitted to a hospital stroke unit? Int J Rehabil Res. 36:346–353, 2013.

    Article  PubMed  Google Scholar 

  13. Daly, J. J., K. Roenigk, J. Holcomb, J. M. Rogers, K. Butler, J. Gansen, J. McCabe, E. Fredrickson, E. B. Marsolais, and R. L. Ruff. A randomized controlled trial of functional neuromuscular stimulation in chronic stroke subjects. Stroke. 37:172–178, 2006.

    Article  PubMed  Google Scholar 

  14. Daly, J. J., J. Zimbelman, K. L. Roenigk, J. P. McCabe, J. M. Rogers, K. Butler, R. Burdsall, J. P. Holcomb, E. B. Marsolais, and R. L. Ruff. Recovery of coordinated gait: randomized controlled stroke trial of functional electrical stimulation (FES) versus no FES, with weight-supported treadmill and over-ground training. Neurorehabil Neural Repair. 25:588–596, 2011.

    Article  PubMed  Google Scholar 

  15. Davis, R., O. Sparrow, G. Cosendai, J. H. Burridge, C. Wulff, R. Turk, and J. Schulman. Poststroke upper-limb rehabilitation using 5 to 7 inserted microstimulators: implant procedure, safety, and efficacy for restoration of function. Arch Phys Med Rehabil. 89:1907–1912, 2008.

    Article  PubMed  Google Scholar 

  16. Doucet, B. M., A. Lam, and L. Griffin. Neuromuscular electrical stimulation for skeletal muscle function. Yale J Biol Med. 85:201–215, 2012.

    PubMed Central  PubMed  Google Scholar 

  17. Duncan, P. W., R. Zorowitz, B. Bates, J. Y. Choi, J. J. Glasberg, G. D. Graham, R. C. Katz, K. Lamberty, and D. Reker. Management of Adult Stroke Rehabilitation Care: a clinical practice guideline. Stroke. 36:e100–e143, 2005.

    Article  PubMed  Google Scholar 

  18. Embrey, D. G., S. L. Holtz, G. Alon, B. A. Brandsma, and S. W. McCoy. Functional electrical stimulation to dorsiflexors and plantar flexors during gait to improve walking in adults with chronic hemiplegia. Arch Phys Med Rehabil. 91:687–696, 2010.

    Article  PubMed  Google Scholar 

  19. Everaert, D. G., R. B. Stein, G. M. Abrams, A. W. Dromerick, G. E. Francisco, B. J. Hafner, T. N. Huskey, M. C. Munin, K. J. Nolan, and C. V. Kufta. Effect of a foot-drop stimulator and ankle-foot orthosis on walking performance after stroke: a multicenter randomized controlled trial. Neurorehabil Neural Repair. 27:579–591, 2013.

    Article  PubMed  Google Scholar 

  20. Ferrante, S., A. Pedrocchi, G. Ferrigno, and F. Molteni. Cycling induced by functional electrical stimulation improves the muscular strength and the motor control of individuals with post-acute stroke. Europa Medicophysica-SIMFER 2007 Award Winner. Eur. J. Phys. Rehabil. Med. 44:159–167, 2008.

  21. Francis, S., X. Lin, S. Aboushoushah, T. P. White, M. Phillips, R. Bowtell, and C. S. Constantinescu. fMRI analysis of active, passive and electrically stimulated ankle dorsiflexion. Neuroimage. 44:469–479, 2009.

    Article  PubMed  Google Scholar 

  22. Gandolla, M., S. Ferrante, F. Molteni, E. Guanziroli, T. Frattini, A. Martegani, G. Ferrigno, K. Friston, A. Pedrocchi, and N. S. Ward. Re-thinking the role of motor cortex: context-sensitive motor outputs? Neuroimage. 91:366–374, 2014.

    Article  PubMed Central  PubMed  Google Scholar 

  23. Graham, G. M., T. A. Thrasher, and M. R. Popovic. The effect of random modulation of functional electrical stimulation parameters on muscle fatigue. IEEE Trans Neural Syst Rehabil Eng. 14:38–45, 2006.

    Article  PubMed  Google Scholar 

  24. Hanlon, M., and R. Anderson. Real-time gait event detection using wearable sensors. Gait Posture. 30:523–527, 2009.

    Article  PubMed  Google Scholar 

  25. Hubbard, I. J., M. W. Parsons, C. Neilson, and L. M. Carey. Task-specific training: evidence for and translation to clinical practice. Occup Ther Int. 16:175–189, 2009.

    Article  PubMed  Google Scholar 

  26. Iftime-Nielsen, S. D., M. S. Christensen, R. J. Vingborg, T. Sinkjaer, A. Roepstorff, and M. J. Grey. Interaction of electrical stimulation and voluntary hand movement in SII and the cerebellum during simulated therapeutic functional electrical stimulation in healthy adults. Hum Brain Mapp. 33:40–49, 2012.

    Article  PubMed  Google Scholar 

  27. Joa, K. L., Y. H. Han, C. W. Mun, B. K. Son, C. H. Lee, Y. B. Shin, H. Y. Ko, and Y. I. Shin. Evaluation of the brain activation induced by functional electrical stimulation and voluntary contraction using functional magnetic resonance imaging. J Neuroeng Rehabil. 9:48, 2012.

    Article  PubMed Central  PubMed  Google Scholar 

  28. Kaelin-Lang, A., A. R. Luft, L. Sawaki, A. H. Burstein, Y. H. Sohn, and L. G. Cohen. Modulation of human corticomotor excitability by somatosensory input. J Physiol. 540:623–633, 2002.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Kesar, T. M., R. Perumal, D. S. Reisman, A. Jancosko, K. S. Rudolph, J. S. Higginson, and S. A. Binder-Macleod. Functional electrical stimulation of ankle plantarflexor and dorsiflexor muscles: effects on poststroke gait. Stroke. 40:3821–3827, 2009.

    Article  PubMed Central  PubMed  Google Scholar 

  30. Khaslavskaia, S., and T. Sinkjaer. Motor cortex excitability following repetitive electrical stimulation of the common peroneal nerve depends on the voluntary drive. Exp Brain Res. 162:497–502, 2005.

    Article  PubMed  Google Scholar 

  31. Kido Thompson, A., and R. B. Stein. Short-term effects of functional electrical stimulation on motor-evoked potentials in ankle flexor and extensor muscles. Exp. Brain Res. 159:491–500, 2004.

  32. Kim, J. H., Y. Chung, Y. Kim, and S. Hwang. Functional electrical stimulation applied to gluteus medius and tibialis anterior corresponding gait cycle for stroke. Gait Posture. 36:65–67, 2012.

    Article  PubMed  Google Scholar 

  33. Kleim, J. A., and T. A. Jones. Principles of experience-dependent neural plasticity: implications for rehabilitation after brain damage. J Speech Lang Hear Res. 51:S225–S239, 2008.

    Article  PubMed  Google Scholar 

  34. Kluding, P. M., K. Dunning, M. W. O’Dell, S. S. Wu, J. Ginosian, J. Feld, and K. McBride. Foot drop stimulation versus ankle foot orthosis after stroke: 30-week outcomes. Stroke. 44:1660–1669, 2013.

    Article  CAS  PubMed  Google Scholar 

  35. Kottink, A. I., H. J. Hermens, A. V. Nene, M. J. Tenniglo, C. G. Groothuis-Oudshoorn, and M. J. IJzerman. Therapeutic effect of an implantable peroneal nerve stimulator in subjects with chronic stroke and footdrop: a randomized controlled trial. Phys Ther. 88:437–448, 2008.

    Article  PubMed  Google Scholar 

  36. Laufer, Y., and M. Elboim-Gabyzon. Does sensory transcutaneous electrical stimulation enhance motor recovery following a stroke? A systematic review. Neurorehabil Neural Repair. 25:799–809, 2011.

    Article  Google Scholar 

  37. Laufer, Y., J. M. Hausdorff, and H. Ring. Effects of a foot drop neuroprosthesis on functional abilities, social participation, and gait velocity. Am J Phys Med Rehabil. 88:14–20, 2009.

    Article  PubMed  Google Scholar 

  38. Laufer, Y., H. Ring, E. Sprecher, and J. M. Hausdorff. Gait in individuals with chronic hemiparesis: one-year follow-up of the effects of a neuroprosthesis that ameliorates foot drop. J Neurol Phys Ther. 33:104–110, 2009.

    Article  PubMed  Google Scholar 

  39. Lee, H. J., K. H. Cho, and W. H. Lee. The effects of body weight support treadmill training with power-assisted functional electrical stimulation on functional movement and gait in stroke patients. Am J Phys Med Rehabil. 92:1051–1059, 2013.

    Article  PubMed  Google Scholar 

  40. Liberson, W. T., H. J. Holmquest, D. Scot, and M. Dow. Functional electrotherapy: stimulation of the peroneal nerve synchronized with the swing phase of the gait of hemiplegic patients. Arch Phys Med Rehabil. 42:101–105, 1961.

    CAS  PubMed  Google Scholar 

  41. Matsunaga, T., Y. Shimada, and K. Sato. Muscle fatigue from intermittent stimulation with low and high frequency electrical pulses. Arch Phys Med Rehabil. 80:48–53, 1999.

    Article  CAS  PubMed  Google Scholar 

  42. Meesen, R. L., K. Cuypers, J. C. Rothwell, S. P. Swinnen, and O. Levin. The effect of long-term TENS on persistent neuroplastic changes in the human cerebral cortex. Hum Brain Mapp. 32:872–882, 2011.

    Article  PubMed  Google Scholar 

  43. Merletti, R., A. Andina, M. Galante, and I. Furlan. Clinical experience of electronic peroneal stimulators in 50 hemiparetic patients. Scand J Rehabil Med. 11:111–121, 1979.

    CAS  PubMed  Google Scholar 

  44. Ng, M. F., R. K. Tong, and L. S. Li. A pilot study of randomized clinical controlled trial of gait training in subacute stroke patients with partial body-weight support electromechanical gait trainer and functional electrical stimulation: six-month follow-up. Stroke. 39:154–160, 2008.

    Article  PubMed  Google Scholar 

  45. O’Dell, M. W., K. Dunning, P. Kluding, S. S. Wu, J. Feld, J. Ginosian, and K. McBride. Response and prediction of improvement in gait speed from functional electrical stimulation in persons with poststroke drop foot. PM R. 6:587–601, 2014.

    Article  PubMed  Google Scholar 

  46. Perez, M. A., E. C. Field-Fote, and M. K. Floeter. Patterned sensory stimulation induces plasticity in reciprocal ia inhibition in humans. J Neurosci. 23:2014–2018, 2003.

    CAS  PubMed  Google Scholar 

  47. Peurala, S. H., I. M. Tarkka, K. Pitkanen, and J. Sivenius. The effectiveness of body weight-supported gait training and floor walking in patients with chronic stroke. Arch Phys Med Rehabil. 86:1557–1564, 2005.

    Article  PubMed  Google Scholar 

  48. Ring, H., and N. Rosenthal. Controlled study of neuroprosthetic functional electrical stimulation in sub-acute post-stroke rehabilitation. J Rehabil Med. 37:32–36, 2005.

    Article  PubMed  Google Scholar 

  49. Rosamond, W., K. Flegal, G. Friday, K. Furie, A. Go, K. Greenlund, et al. Heart disease and stroke statistics-2007 update: a report from the American Heart Association Statistics Committee and Stroke Statistics Subcommittee. Circulation. 115:e69–e171, 2007.

    Article  PubMed  Google Scholar 

  50. Rosenkranz, K., and J. C. Rothwell. The effect of sensory input and attention on the sensorimotor organization of the hand area of the human motor cortex. J Physiol. 561:307–320, 2004.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  51. Rueterbories, J., E. G. Spaich, and O. K. Andersen. Gait event detection for use in FES rehabilitation by radial and tangential foot accelerations. Med Eng Phys. 36:502–508, 2014.

    Article  PubMed  Google Scholar 

  52. Rueterbories, J., E. G. Spaich, B. Larsen, and O. K. Andersen. Methods for gait event detection and analysis in ambulatory systems. Med Eng Phys. 32:545–552, 2010.

    Article  PubMed  Google Scholar 

  53. Rushton, D. N. Functional electrical stimulation and rehabilitation—an hypothesis. Med Eng Phys. 25:75–78, 2003.

    Article  CAS  PubMed  Google Scholar 

  54. Sabut, S. K., C. Sikdar, R. Kumar, and M. Mahadevappa. Functional electrical stimulation of dorsiflexor muscle: effects on dorsiflexor strength, plantarflexor spasticity, and motor recovery in stroke patients. NeuroRehabilitation. 29:393–400, 2011.

    PubMed  Google Scholar 

  55. Sabut, S. K., C. Sikdar, R. Mondal, R. Kumar, and M. Mahadevappa. Restoration of gait and motor recovery by functional electrical stimulation therapy in persons with stroke. Disabil Rehabil. 32:1594–1603, 2010.

    Article  PubMed  Google Scholar 

  56. Schmidt, R. A., and T. D. Lee. Motor control and learning : a behavioral emphasis (5th ed.). Champaign, IL: Human Kinetics, 2011.

    Google Scholar 

  57. Schuhfried, O., R. Crevenna, V. Fialka-Moser, and T. Paternostro-Sluga. Non-invasive neuromuscular electrical stimulation in patients with central nervous system lesions: an educational review. J Rehabil Med. 44:99–105, 2012.

    Article  PubMed  Google Scholar 

  58. Sheffler, L. R., and J. Chae. Neuromuscular electrical stimulation in neurorehabilitation. Muscle Nerve. 35:562–590, 2007.

    Article  PubMed  Google Scholar 

  59. Sheffler, L. R., M. T. Hennessey, G. G. Naples, and J. Chae. Peroneal nerve stimulation versus an ankle foot orthosis for correction of footdrop in stroke: impact on functional ambulation. Neurorehabil Neural Repair. 20:355–360, 2006.

    Article  PubMed  Google Scholar 

  60. Sheffler, L. R., M. T. Hennessey, G. G. Naples, and J. Chae. Improvement in functional ambulation as a therapeutic effect of peroneal nerve stimulation in hemiplegia: two case reports. Neurorehabil Neural Repair. 21:366–369, 2007.

    Article  PubMed  Google Scholar 

  61. Sheffler, L. R., P. N. Taylor, D. D. Gunzler, J. H. Buurke, M. J. Ijzerman, and J. Chae. Randomized controlled trial of surface peroneal nerve stimulation for motor relearning in lower limb hemiparesis. Arch Phys Med Rehabil. 94:1007–1014, 2013.

    Article  PubMed Central  PubMed  Google Scholar 

  62. Springer, S., J. J. Vatine, A. Wolf, and Y. Laufer. The effects of dual-channel functional electrical stimulation on stance phase sagittal kinematics in patients with hemiparesis. J Electromyogr Kinesiol. 23:476–482, 2013.

    Article  PubMed  Google Scholar 

  63. Stein, R. B., D. G. Everaert, A. K. Thompson, S. L. Chong, M. Whittaker, J. Robertson, and G. Kuether. Long-term therapeutic and orthotic effects of a foot drop stimulator on walking performance in progressive and nonprogressive neurological disorders. Neurorehabil Neural Repair. 24:152–167, 2010.

    Article  PubMed  Google Scholar 

  64. Taylor, P. N., J. H. Burridge, A. L. Dunkerley, D. E. Wood, J. A. Norton, C. Singleton, and I. D. Swain. Clinical use of the Odstock dropped foot stimulator: its effect on the speed and effort of walking. Arch Phys Med Rehabil. 80:1577–1583, 1999.

    Article  CAS  PubMed  Google Scholar 

  65. Thrasher, T. A., and M. R. Popovic. Functional electrical stimulation of walking: function, exercise and rehabilitation. Ann Readapt Med Phys. 51:452–460, 2008.

    Article  CAS  PubMed  Google Scholar 

  66. Tong, R. K., M. F. Ng, and L. S. Li. Effectiveness of gait training using an electromechanical gait trainer, with and without functional electric stimulation, in subacute stroke: a randomized controlled trial. Arch Phys Med Rehabil. 87:1298–1304, 2006.

    Article  PubMed  Google Scholar 

  67. Tudor-Locke, C., W. D. Johnson, and P. T. Katzmarzyk. Accelerometer-determined steps per day in US adults. Med Sci Sports Exerc. 41:1384–1391, 2009.

    Article  PubMed  Google Scholar 

  68. van Swigchem, R., J. Vloothuis, J. den Boer, V. Weerdesteyn, and A. C. Geurts. Is transcutaneous peroneal stimulation beneficial to patients with chronic stroke using an ankle-foot orthosis? A within-subjects study of patients’ satisfaction, walking speed and physical activity level. J Rehabil Med. 42:117–121, 2010.

    Article  PubMed  Google Scholar 

  69. Wade, D. T., V. A. Wood, A. Heller, J. Maggs, and R. Langton Hewer. Walking after stroke. Measurement and recovery over the first 3 months. Scand J Rehabil Med. 19:25–30, 1987.

    CAS  PubMed  Google Scholar 

  70. Wilkie, K. M., J. E. Shiels, C. Bulley, and L. G. Salisbury. “Functional electrical stimulation (FES) impacted on important aspects of my life”: a qualitative exploration of chronic stroke patients’ and carers’ perceptions of FES in the management of dropped foot. Physiother. Theory Pract. 28:1–9, 2012.

    Article  PubMed  Google Scholar 

  71. World Health Organization. The World Health Report 2003: shaping the future. Geneva: World Health Organization, 2004.

    Google Scholar 

  72. Yamaguchi, T., K. Sugawara, S. Tanaka, N. Yoshida, K. Saito, S. Tanabe, Y. Muraoka, and M. Liu. Real-time changes in corticospinal excitability during voluntary contraction with concurrent electrical stimulation. PLoS One. 7:e46122, 2012.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  73. Yan, T., C. W. Hui-Chan, and L. S. Li. Functional electrical stimulation improves motor recovery of the lower extremity and walking ability of subjects with first acute stroke: a randomized placebo-controlled trial. Stroke. 36:80–85, 2005.

    Article  PubMed  Google Scholar 

Download references

Conflict of interest

The authors have no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michal Kafri.

Additional information

Associate Editor Amet Gefen oversaw the review of this article.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kafri, M., Laufer, Y. Therapeutic Effects of Functional Electrical Stimulation on Gait in Individuals Post-Stroke. Ann Biomed Eng 43, 451–466 (2015). https://doi.org/10.1007/s10439-014-1148-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-014-1148-8

Keywords

  • Functional electrical stimulation
  • Stroke
  • Hemiparesis
  • Gait
  • Therapeutic effect
  • Plasticity