Annals of Biomedical Engineering

, Volume 43, Issue 2, pp 404–415 | Cite as

Computing Muscle, Ligament, and Osseous Contributions to the Elbow Varus Moment During Baseball Pitching

  • James H. Buffi
  • Katie Werner
  • Tom Kepple
  • Wendy M. MurrayEmail author


Baseball pitching imposes a dangerous valgus load on the elbow that puts the joint at severe risk for injury. The goal of this study was to develop a musculoskeletal modeling approach to enable evaluation of muscle–tendon contributions to mitigating elbow injury risk in pitching. We implemented a forward dynamic simulation framework that used a scaled biomechanical model to reproduce a pitching motion recorded from a high school pitcher. The medial elbow muscles generated substantial, protective, varus elbow moments in our simulations. For our subject, the triceps generated large varus moments at the time of peak valgus loading; varus moments generated by the flexor digitorum superficialis were larger, but occurred later in the motion. Increasing muscle–tendon force output, either by augmenting parameters associated with strength and power or by increasing activation levels, decreased the load on the ulnar collateral ligament. Published methods have not previously quantified the biomechanics of elbow muscles during pitching. This simulation study represents a critical advancement in the study of baseball pitching and highlights the utility of simulation techniques in the study of this difficult problem.


Ulnar collateral ligament Musculoskeletal model Valgus torque Dynamic simulation 



This work was funded by NIH Grant: EB011615 and the Searle Funds of the Chicago Community Trust.

Conflicts of Interest



  1. 1.
    Alderink, A., T. Kepple, K. L. Siegel, A. Razzook, and S. Stanhope. Sources of forward ball velocity in a pitched baseball. Paper presented at 32nd Annual Meeting of the American Society of Biomechanics 2008; Ann-Arbor, MI.Google Scholar
  2. 2.
    Anz, A. W., B. D. Bushnell, L. P. Griffin, T. J. Noonan, M. R. Torry, and R. J. Hawkins. Correlation of torque and elbow injury in professional baseball pitchers. Am. J. Sports Med. 38:1368–1374, 2010.CrossRefPubMedGoogle Scholar
  3. 3.
    Arampatzis, A., K. Karamanidis, G. Morey-Klapsing, G. De Monte, and S. Stafilidis. Mechanical properties of the triceps surae tendon and aponeurosis in relation to intensity of sport activity. J. Biomech. 40:1946–1952, 2007.CrossRefPubMedGoogle Scholar
  4. 4.
    Bogumill, G. P. Functional anatomy of the flexor tendon system of the hand. Hand Surgery. 7:33–46, 2002.CrossRefPubMedGoogle Scholar
  5. 5.
    Buchanan, T. S., S. L. Delp, and J. A. Solbeck. Muscular resistance to varus and valgus loads at the elbow. J. Biomech. Eng.-T. ASME 120:634–639, 1998.CrossRefGoogle Scholar
  6. 6.
    Crowninshield, R. D., and R. A. Brand. A physiologically based criterion of muscle force prediction in locomotion. J. Biomech. 14:793–801, 1981.CrossRefPubMedGoogle Scholar
  7. 7.
    Delp, S. L., F. C. Anderson, A. S. Arnold, et al. OpenSim: open-source software to create and analyze dynamic simulations of movement. IEEE Trans. Biomed. Eng. 54:1940–1950, 2007.CrossRefPubMedGoogle Scholar
  8. 8.
    Duggan, J. P., U. C. Osadebe, J. W. Alexander, P. C. Noble, and D. M. Lintner. The impact of ulnar collateral ligament tear and reconstruction on contact pressures in the lateral compartment of the elbow. J. Shoulder Elb. Surg. 20:226–233, 2011.CrossRefGoogle Scholar
  9. 9.
    Eric, M., D. Krivokuca, S. Savovic, I. Leknan, and N. Vucinic. Prevalence of the palmaris longus through clinical evaluation. Surg. Radiol. Anat. 32:357–361, 2010.CrossRefPubMedGoogle Scholar
  10. 10.
    Fleisig, G. S., J. R. Andrews, C. J. Dillman, and R. F. Escamilla. Kinetics of baseball pitching with implications about injury mechanisms. Am. J. Sports Med. 23:233–239, 1995.CrossRefPubMedGoogle Scholar
  11. 11.
    Fleisig, G. S., D. S. Kingsley, J. W. Loftice, et al. Kinetic comparison among the fastball, curveball, change-up, and slider in collegiate baseball pitchers. Am. J. Sports Med. 34:423–430, 2006.CrossRefPubMedGoogle Scholar
  12. 12.
    Fornalski, S., R. Gupta, and T. Q. Lee. Anatomy and biomechanics of the elbow joint. Sports. Med. Arthrosc. 11:1–9, 2003.CrossRefGoogle Scholar
  13. 13.
    Hamilton, C. D., R. E. Glousman, F. W. Jobe, J. Brault, M. Pink, and J. Perry. Dynamic stability of the elbow: electromyographic analysis of the flexor pronator group and the extensor group in pitchers with valgus instability. J. Shoulder Elb. Surg. 5:347–354, 1996.CrossRefGoogle Scholar
  14. 14.
    Hamner, S. R., and S. L. Delp. Muscle contributions to fore-aft and vertical body mass center accelerations over a range of running speeds. J. Biomech. 46:780–787, 2013.CrossRefPubMedCentralPubMedGoogle Scholar
  15. 15.
    Hamner, S. R., A. Seth, and S. L. Delp. Muscle contributions to propulsion and support during running. J. Biomech. 43:2709–2716, 2010.CrossRefPubMedCentralPubMedGoogle Scholar
  16. 16.
    Hariri, S., and M. R. Safran. Ulnar collateral ligament injury in the overhead athlete. Clin. Sports Med. 29:619–644, 2010.CrossRefPubMedGoogle Scholar
  17. 17.
    Hirashima, M., and T. Ohtsuki. Exploring the mechanism of skilled overarm throwing. Exerc. Sport Sci. Rev. 36:205–211, 2008.CrossRefPubMedGoogle Scholar
  18. 18.
    Holzbaur, K. R. S., S. L. Delp, G. E. Gold, and W. M. Murray. Moment-generating capacity of upper limb muscles in healthy adults. J. Biomech. 40:2442–2449, 2007.CrossRefPubMedGoogle Scholar
  19. 19.
    Holzbaur, K. R. S., W. M. Murray, G. E. Gold, and S. L. Delp. Upper limb muscle volumes in adult subjects. J. Biomech. 40:742–749, 2007.CrossRefPubMedGoogle Scholar
  20. 20.
    Hortobagyi, T., and F. I. Katch. Eccentric and concentric torque–velocity relationships during arm flexion and extension—influence of strength level. Eur. J. Appl. Physiol. O. 60:395–401, 1990.CrossRefGoogle Scholar
  21. 21.
    Kobayashi, K., K. J. Burton, C. Rodner, B. Smith, and A. E. Caputo. Lateral compression injuries in the pediatric elbow: Panner’s disease and osteochondritis dissecans of the capitellum. J. Am. Acad. Orthop. Sur. 12:246–254, 2004.Google Scholar
  22. 22.
    Kursa, K., E. Diao, L. Lattanza, and D. Rempel. In vivo forces generated by finger flexor muscles do not depend on the rate of fingertip loading during an isometric task. J. Biomech. 38:2288–2293, 2005.CrossRefPubMedGoogle Scholar
  23. 23.
    Lin, F., N. Kohli, S. Perlmultter, D. Lim, G. W. Nuber, and M. Makhsous. Muscle contribution to elbow joint valgus stability. J. Shoulder Elb. Surg. 16:795–802, 2007.CrossRefGoogle Scholar
  24. 24.
    Lipps, D. B., Y. K. Oh, J. A. Ashton-Miller, and E. M. Wojtys. Effect of increased quadriceps tensile stiffness on peak anterior cruciate ligament strain during a simulated pivot landing. J. Orthopaed. Res. 32:423–430, 2014.CrossRefGoogle Scholar
  25. 25.
    Loren, G. J., and R. L. Lieber. Tendon biomechanical properties enhance human wrist muscle specialization. J. Biomech. 28:791–799, 1995.CrossRefPubMedGoogle Scholar
  26. 26.
    Lu, T. W., and J. J. O’Connor. Bone position estimation from skin marker co-ordinates using global optimisation with joint constraints. J. Biomech. 32:129–134, 1999.CrossRefPubMedGoogle Scholar
  27. 27.
    McGraw, M. A., T. E. Kremchek, T. R. Hooks, and C. Papangelou. Biomechanical evaluation of the docking plus ulnar collateral ligament reconstruction technique compared with the docking technique. Am. J. Sports Med. 41:313–320, 2013.CrossRefPubMedGoogle Scholar
  28. 28.
    Millard, M., T. Uchida, A. Seth, and S. L. Delp. Flexing computational muscle: modeling and simulation of musculotendon dynamics. J. Biomech. Eng.-T. ASME. 135:021005, 2013.CrossRefGoogle Scholar
  29. 29.
    Morrey, B. F., and K. N. An. Articular and ligamentous contributions to the stability of the elbow joint. Am. J. Sports Med. 11:315–319, 1983.CrossRefPubMedGoogle Scholar
  30. 30.
    Nissen, C. W., M. Solomito, E. Garibay, S. Ounpuu, and M. Westwell. A biomechanical comparison of pitching from a mound versus flat ground in adolescent baseball pitchers. Sports Health 5:530–536, 2013.CrossRefPubMedCentralPubMedGoogle Scholar
  31. 31.
    Nissen, C. W., M. Westwell, S. Ounpuu, M. Patel, M. Solomito, and J. Tate. A biomechanical comparison of the fastball and curveball in adolescent baseball pitchers. Am. J. Sports Med. 37:1492–1498, 2009.CrossRefPubMedGoogle Scholar
  32. 32.
    Official Baseball Rules. Accessed March 27, 2014, 2014.
  33. 33.
    Pomianowski, S., S. W. O’Driscoll, P. G. Neale, M. J. Park, B. F. Morrey, and K. N. An. The effect of forearm rotation on laxity and stability of the elbow. Clin. Biomech. 16:401–407, 2001.CrossRefGoogle Scholar
  34. 34.
    Remy, C. D., and D. G. Thelen. Optimal estimation of dynamically consistent kinematics and kinetics for forward dynamic simulation of gait. J. Biomech. Eng. 131:031005, 2009.CrossRefPubMedCentralPubMedGoogle Scholar
  35. 35.
    Saul, K. R., X. Hu, C. M. Goehler, et al. Benchmarking of dynamic simulation predictions in two software platforms using an upper limb musculoskeletal model. Comput. Methods Biomech. Biomed. Eng. 2014. doi: 10.1080/10255842.2014.916698.
  36. 36.
    Scovil, C. Y., and J. L. Ronsky. Sensitivity of a Hill-based muscle model to perturbations in model parameters. J. Biomech. 39:2055–2063, 2006.CrossRefPubMedGoogle Scholar
  37. 37.
    Seiber, K., R. Gupta, M. H. McGarry, M. R. Safran, and T. Q. Lee. The role of the elbow musculature, forearm rotation, and elbow flexion in elbow stability: an in vitro study. J. Shoulder Elb. Surg. 18:260–268, 2009.CrossRefGoogle Scholar
  38. 38.
    Thelen, D. G. Adjustment of muscle mechanics model parameters to simulate dynamic contractions in older adults. J. Biomech. Eng.-T. ASME. 125:70–77, 2003.CrossRefGoogle Scholar
  39. 39.
    Thelen, D. G., F. C. Anderson, and S. L. Delp. Generating dynamic simulations of movement using computed muscle control. J. Biomech. 36:321–328, 2003.CrossRefPubMedGoogle Scholar
  40. 40.
    Udall, J. H., M. J. Fitzpatrick, M. H. McGarry, T. B. Leba, and T. Q. Lee. Effects of flexor–pronator muscle loading on valgus stability of the elbow with an intact, stretched, and resected medial ulnar collateral ligament. J. Shoulder Elb. Surg. 18:773–778, 2009.CrossRefGoogle Scholar
  41. 41.
    Ward, S. R., G. J. Loren, S. Lundberg, and R. L. Lieber. High stiffness of human digital flexor tendons is suited for precise finger positional control. J. Neurophysiol. 96:2815–2818, 2006.CrossRefPubMedGoogle Scholar
  42. 42.
    Xiang, Y., J. S. Arora, and K. Abdel-Malek. Optimization-based prediction of asymmetric human gait. J. Biomech. 44:683–693, 2011.CrossRefPubMedGoogle Scholar
  43. 43.
    Zajac, F. E. Muscle and tendon: properties, models, scaling, and application to biomechanics and motor control. Crit. Rev. Biomed. Eng. 17:359–411, 1989.PubMedGoogle Scholar

Copyright information

© Biomedical Engineering Society 2014

Authors and Affiliations

  • James H. Buffi
    • 1
    • 2
  • Katie Werner
    • 5
  • Tom Kepple
    • 5
  • Wendy M. Murray
    • 1
    • 2
    • 3
    • 4
    Email author
  1. 1.Department of Biomedical EngineeringNorthwestern UniversityEvanstonUSA
  2. 2.Sensory Motor Performance Program (SMPP)Rehabilitation Institute of ChicagoChicagoUSA
  3. 3.Departments of PM&R and PTHMSNorthwestern UniversityChicagoUSA
  4. 4.Edward Hines Jr. VA HospitalHinesUSA
  5. 5.C-Motion, Inc.GermantownUSA

Personalised recommendations