Skip to main content
Log in

Extrinsic and Intrinsic Index Finger Muscle Attachments in an OpenSim Upper-Extremity Model

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Musculoskeletal models allow estimation of muscle function during complex tasks. We used objective methods to determine possible attachment locations for index finger muscles in an OpenSim upper-extremity model. Data-driven optimization algorithms, Simulated Annealing and Hook-Jeeves, estimated tendon locations crossing the metacarpophalangeal (MCP), proximal interphalangeal (PIP) and distal interphalangeal (DIP) joints by minimizing the difference between model-estimated and experimentally-measured moment arms. Sensitivity analysis revealed that multiple sets of muscle attachments with similar optimized moment arms are possible, requiring additional assumptions or data to select a single set of values. The most smooth muscle paths were assumed to be biologically reasonable. Estimated tendon attachments resulted in variance accounted for (VAF) between calculated moment arms and measured values of 78% for flex/extension and 81% for ab/adduction at the MCP joint. VAF averaged 67% at the PIP joint and 54% at the DIP joint. VAF values at PIP and DIP joints partially reflected the constant moment arms reported for muscles about these joints. However, all moment arm values found through optimization were non-linear and non-constant. Relationships between moment arms and joint angles were best described with quadratic equations for tendons at the PIP and DIP joints.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. Abdel-Hamid, G. A., R. A. El-Beshbishy, and I. H. Abdel Aal. Anatomical variations of the hand extensors. Folia Morphol. 72(3):249–257, 2013.

    Article  CAS  Google Scholar 

  2. Ackland, D. C., Y. C. Lin, and M. G. Pandy. Sensitivity of model predictions of muscle function to changes in moment arms and muscle-tendon properties: a Monte Carlo analysis. J. Biomech. 45:1461–1471, 2012.

    Google Scholar 

  3. An, K. N., E. Y. Chao, W. P. Cooney, and R. L. Linscheid. Normative model of human hand for biomechanical analysis. J. Biomech. 12:775–788, 1979.

    Article  CAS  PubMed  Google Scholar 

  4. An, K. N., Y. Ueba, E. Y. Chao, W. P. Cooney, and R. L. Linscheid. Tendon excursion and moment arm of index finger muscles. J. Biomech. 16:419–425, 1983.

    Article  CAS  PubMed  Google Scholar 

  5. Armstrong, T. J., and D. B. Chaffin. An investigation of the relationship between displacements of the finger and wrist joints and the extrinsic finger flexor tensions. J. Biomech. 11:119–128, 1978.

    Article  CAS  PubMed  Google Scholar 

  6. Arnold, A. S., S. Salinas, D. J. Asakawa, and S. L. Delp. Accuracy of muscle moment arms estimated from MRI-based musculoskeletal models of the lower extremity. Comput. Aided Surg. 5:108–119, 2000.

    Article  CAS  PubMed  Google Scholar 

  7. Basu, S. S., and S. Hazary. Variations of the lumbrical muscles of the hand. Anat. Rec. 136:501–504, 1960.

    Article  CAS  PubMed  Google Scholar 

  8. Berolo, S., R. P. Wells, and B. C. Amick. Musculoskeletal symptoms among mobile hand-held device users and their relationship to device use: a preliminary study in a Canadian university population. Appl. Ergon. 42:371–378, 2011.

    Article  PubMed  Google Scholar 

  9. Brand, P. W., K. C. Cranor, and J. C. Ellis. Tendon and pulleys at the metacarpophalangeal joint of a finger. J. Bone Jt. Surg. 57:779–784, 1975.

    CAS  Google Scholar 

  10. Brand, P. W., and A. Hollister. Clinical mechanics of the hand. St. Louis: Mosby, 1993.

    Google Scholar 

  11. Buford, Jr, W. L., S. Koh, C. R. Andersen, and S. F. Viegas. Analysis of intrinsic-extrinsic muscle function through interactive 3-dimensional kinematic simulation and cadaver studies. J. Hand Surg. (A) 30:1267–1275, 2005.

    Article  Google Scholar 

  12. Caetano, M Bf, W. M. Albertoni, and E. B. Caetano. Anatomical studies of the distal insertion of extensor pollicis longus. Acta Ortopeica Brasileira 12:118–124, 2004.

    Article  Google Scholar 

  13. Chadwick, E. K., D. Blana, A. J. van den Bogert, and R. F. Kirsch. A real-time, 3-D musculoskeletal model for dynamic simulation of arm movements. IEEE Trans. Biomed. Eng. 56(4):941–948, 2009.

    Article  PubMed Central  PubMed  Google Scholar 

  14. Chao, E. Y., K. N. An, W. Cooney, and R. Linscheid. Normative model of human hand, Biomechanics of the Hand. Singapore: World Scientific, pp. 5–30, 1989.

    Book  Google Scholar 

  15. Delp, S. L., F. C. Anderson, A. S. Arnold, P. Loan, A. Habib, and C. T. John. Opensim: open-source software to create and analyze dynamic simulations of movement. IEEE Trans. Biomed. Eng. 54(11):1940–1950, 2007.

    Article  PubMed  Google Scholar 

  16. Delp, S. L., and J. P. Loan. A graphics-based software system to develop and analyze models of musculoskeletal structures. Comput. Biol. Med. 25(1):21–34, 1995.

    Article  CAS  PubMed  Google Scholar 

  17. Ettema, G. J. C., G. Styes, and V. Kippers. The moment arms of 23 muscles segments of the upper limb with varying elbow and forearm positions: implications for motor control. Hum. Mov. Sci. 17:201–220, 1998.

    Article  Google Scholar 

  18. Fowler, N. K., A. C. Nicol, B. Condon, and D. Hadley. Method of determination of three dimensional index finger moment arms and tendon lines of action using high resolution MRI scans. J. Biomech. 34:791–797, 2001.

    Article  CAS  PubMed  Google Scholar 

  19. Franko, O. I., T. M. Winters, T. F. Tirrell, E. R. Hentzen, and R. L. Lieber. Moment arms of the human digital flexors. J. Biomech. 44:1987–1990, 2011.

    Article  PubMed Central  PubMed  Google Scholar 

  20. Fregly, B. J., M. L. Boninger, and D. J. Reinkensmeyer. Personalized neuromusculoskeletal modeling to improve treatment of mobility impairments: a perspective from European research sites. J. NeuroEng. Rehabil. 9:18, 2012.

    Article  PubMed Central  PubMed  Google Scholar 

  21. Garner, B. A., and M. G. Pandy. The obstacle-set method for representing muscle paths in musculoskeletal models. Comput. Methods Biomech. Biomed. Eng. 3:1–30, 2000.

    Article  Google Scholar 

  22. Gatti, C. J., and R. E. Hughes. Optimization of muscle wrapping objects using simulated annealing. Ann. Biomed. Eng. 37:1342–1347, 2009.

    Article  PubMed  Google Scholar 

  23. Gerbeaux, M., E. Turpin, and G. Lensel-Corbeil. Musculoarticular modeling of the triceps brachii. J. Biomech. 29(2):171–180, 1996.

    Article  CAS  PubMed  Google Scholar 

  24. Greiner, T.M., 1991. Hand Anthropometry of US Army Personnel. United States Natick Research, Development and Engineering Center, Natick, MA, Document AD-A244 533.

  25. Hibbeler, R. C. Mechanics of Materials. Boston: Prentice Hall, 2013.

    Google Scholar 

  26. Higginson, J. S., R. R. Neptune, and F. C. Anderson. Simulated parallel annealing within a neighborhood for optimization of biomechanical systems. J. Biomech. 38:1938–1942, 2005.

    Article  CAS  PubMed  Google Scholar 

  27. Higginson, J. S., F. E. Zajac, R. R. Neptune, S. A. Kautz, and S. L. Delp. Muscle contributions to support during gait in an individual with post-stroke hemiparesis. J. Biomech. 39(10):1769–1777, 2006.

    Article  CAS  PubMed  Google Scholar 

  28. Hogan, N. Mechanical impedance of single- and multi-articularsystems. In: Multiple Muscle Systems, edited by J. Winters, and S. Woo. NewYork: Springer, 1990, pp. 149–164.

    Chapter  Google Scholar 

  29. Holzbaur, K. R. S., W. M. Murray, and S. L. Delp. A model of the upper extremity for simulating musculoskeletal surgery and analyzing neuromuscular control. Ann. Biomed. Eng. 33(6):829–840, 2005.

    Article  PubMed  Google Scholar 

  30. Kamper, D. G., H. C. Fischer, and E. G. Cruz. Impact of finger posture on mapping from muscle activation to joint torque. Clin. Biomech. 21:361–369, 2006.

    Article  Google Scholar 

  31. Kelley, C. T. Iterative Methods for Optimization. Philadelphia: SIAM, 1999.

    Book  Google Scholar 

  32. Ketchum, L. D., P. W. Brand, D. Thompson, and G. S. Pocock. The determination of moments for extension of the wrist generated by muscles of the forearm. J. Hand Surg. (A) 3:205–210, 1978.

    Article  CAS  Google Scholar 

  33. Kirkpatrick, S., C. D. Gelatt, and M. P. Vecchi. Optimization by simulated annealing. Science 220(4598):671–680, 1983.

    Article  CAS  PubMed  Google Scholar 

  34. Kociolek, A. M., and P. J. Keir. Modelling tendon excursions and moment arms of the finger flexors: anatomic fidelity versus function. J. Biomech. 44:1967–1973, 2011.

    Article  PubMed  Google Scholar 

  35. Kurse, M. U., H. Lipson, and F. J. Valero-Cuevas. Extrapolatable analytical functions for tendon excursions and moment arms from sparse datasets. IEEE Trans. Biomed. Eng. 59(6):1572–1582, 2012.

    Article  PubMed Central  PubMed  Google Scholar 

  36. Landsmeer, J. M. Studies in the anatomy of articulation. I. The equilibrium of the “intercalated” bone. Acta Morphologica Neerlanddo – Scandinavica 3:287–303, 1961.

    CAS  Google Scholar 

  37. Lee, S. W., and D. G. Kamper. Modeling of multiarticular muscles: importance of inclusion of tendon-pulley interactions in the finger. IEEE Trans. Biomed. Eng. 56(9):2253–2262, 2009.

    Article  PubMed  Google Scholar 

  38. Li, Z., C. C. Chang, P. G. Dempsey, L. Ouyang, and J. Duan. Validation of a three-dimensional hand scanning and dimension extraction method with dimension data. Ergonomics 51(11):1672–1692, 2008.

    Article  PubMed  Google Scholar 

  39. Lloyd, D. G., and T. F. Besier. An EMG-driven musculoskeletal model to estimate muscle forces and knee joint moments in vivo. J. Biomech. 36:765–776, 2003.

    Article  PubMed  Google Scholar 

  40. Lopes, M. M., W. Lawson, T. Scott, and P. J. Keir. Tendon and nerve excursion in the carpal tunnel in healthy and CTD wrists. Clin. Biomech. 26:930–936, 2011.

    Article  Google Scholar 

  41. Mahfouz, M. R., W. A. Hoff, R. D. Komistek, and D. A. Dennis. A robust method for registration of three-dimensional knee implant models to two-dimensional fluoroscopy images. IEEE Trans. Med. Imaging 22(12):1561–1574, 2003.

    Article  PubMed  Google Scholar 

  42. Martin, J. R., M. L. Latash, and V. M. Zatsiorsky. Effects of the index finger position and force production on the flexor digitorum superficialis moment arms at the metacarpophalangeal joints- an magnetic resonance imaging study. Clin. Biomech. 27(5):453–459, 2012.

    Article  Google Scholar 

  43. Matsopoulos, G. K., K. K. Delibasis, N. A. Mouravliansky, P. A. Asvestas, K. S. Nikita, V. E. Kouloulias, and N. K. Uzunoglu. CT-MRI automatic surface-based registration schemes combining global and local optimization techniques. Technol. Health Care 11(4):219–232, 2003.

    PubMed  Google Scholar 

  44. McKay, J. L., and L. H. Ting. Optimization of muscle activity for task-level goals predicts complex changes in limb forces across biomechanical contexts. PLoS Comput. Biol. 8(4):e1002465, 2012.

    Article  PubMed Central  PubMed  Google Scholar 

  45. Murray, W. M., T. S. Buchanan, and S. L. Delp. Scaling of peak moment arms of elbow muscles with dimensions of the upper extremity. J. Biomech. 35:19–26, 2002.

    Article  PubMed  Google Scholar 

  46. Murray, W. M., S. L. Delp, and T. S. Buchanan. Variation of muscle moment arms with elbow and forearm position. J. Biomech. 28(5):513–525, 1995.

    Article  CAS  PubMed  Google Scholar 

  47. Neptune, R. R. Optimization algorithm performance in determining optimal controls in human movement analyses. J. Biomech. Eng. 121:249–252, 1999.

    Article  CAS  PubMed  Google Scholar 

  48. Neptune, R. R., S. A. Kautz, and F. E. Zajac. Muscle contributions to specific biomechanical functions do not change in forward versus backward pedaling. J. Biomech. 33:155–164, 2000.

    Article  CAS  PubMed  Google Scholar 

  49. Neptune, R. R., S. A. Kautz, and F. E. Zajac. Contributions of the individual ankle plantar flexors to support, forward progression and swing initiation during walking. J. Biomech. 34:1387–1398, 2001.

    Article  CAS  PubMed  Google Scholar 

  50. Oh, S., M. Belohlaverk, C. Zhao, N. Osamura, M. E. Zobitz, K. N. An, and P. C. Amadio. Detection of differential gliding characteristics of the flexor digitorum superficialis tendon and subsynovial connective tissue using color Doppler sonographic imaging. J. Ultrasound Med. Off. J. Am. Inst. Ultrasound Med. 26(2):149–155, 2007.

    Google Scholar 

  51. Pigeon, P., L. Yahia, and A. Feldman. Moment arms and lengths of human upper limb muscles as functions of joint angles. J. Biomech. 29(10):1365–1370, 1996.

    Article  CAS  PubMed  Google Scholar 

  52. Qin, J., D. Lee, Z. Li, H. Chen, and J. T. Dennerlein. Estimating in vivo passive forces of the index finger muscles: exploring model parameters. J. Biomech. 43:1358–1363, 2010.

    Article  PubMed  Google Scholar 

  53. Qin, J., M. Trudeau, J. Katz, B. Buchholz, and J. T. Dennerlein. Biomechanical loading on the upper extremity increases from single key to directional tapping. J. Electromyogr. Kinesiol. 21:587–594, 2011.

    Article  PubMed  Google Scholar 

  54. Radwin, R.G., and S.A. Lavender, 1999. Work factors, personal factors, and internal loads: Biomechanics of work stressors. Work-related Musculoskeletal Disorders: Report, workshop summary, and workshop papers, pp. 116–151.

  55. Rankin, J. W., and R. R. Neptune. Musculotendon lengths and moment arms for a three-dimensional upper-extremity model. J. Biomech. 45:1739–1744, 2012.

    Article  PubMed Central  PubMed  Google Scholar 

  56. Rekimoto, J., 2002. Smartskin: An infrastructure for freehand manipulation on interactive surfaces. Proceedings of the SIGCHI conference on human factors in computing systems.

  57. Roloff, I., V. R. Schoffl, L. Vigouroux, and F. Quaine. Biomechanical model for the determination of the forces acting on the finger pulley system. J. Biomech. 39:915–923, 2006.

    Article  PubMed  Google Scholar 

  58. Rubine, D. Specifying gestures by example. In: Proceedings of the 18th Annual Conference on Computer Graphics and Interactive Techniques. New York, NY: ACM, 1991, pp. 329–337. doi:10.1145/122718.122753.

  59. Sancho-Bru, J. L., A. Perez-Gonzalez, M. Vergara-Monedero, and D. Giurintano. A 3-D dynamic model of human finger for studying free movements. J. Biomech. 34:1491–1500, 2001.

    Article  CAS  PubMed  Google Scholar 

  60. Sarojak, M., W. Hoff, R. Komistek, and D. Dennis. An interactive system for kinematic analysis of artificial joint implants. Biomed. Sci. Instrum. 35:9–14, 1999.

    CAS  PubMed  Google Scholar 

  61. Seth, A., M. Sherman, J. A. Reinbolt, and S. L. Delp. OpenSim: a musculoskeletal modeling and simulation framework for in silico investigations and exchange. Symp. Hum. Body Dyn. 2011:212–232, 2011.

    Google Scholar 

  62. Soechting, J. F., and M. Flanders. Flexibility and repeatability of finger movements during typing: analysis of multiple degree of freedom. J. Comput. Neurosci. 4:29–46, 1997.

    Article  CAS  PubMed  Google Scholar 

  63. Valero-Cuevas, F. J., M. E. Johanson, and J. D. Towles. Towards a realistic biomechanical model of the thumb: the choice of kinematic description may be more critical than the solution method or the variability/uncertainty of musculoskeletal parameters. J. Biomech. 36:1019–1030, 2003.

    Article  PubMed  Google Scholar 

  64. van Soest, A. J., and L. J. R. R. Casius. The merits of a parallel genetic algorithm in solving hard optimization problems. J. Biomech. Eng. 125:141–146, 2003.

    Article  PubMed  Google Scholar 

  65. Wang, K., E. P. McGlinn, and K. C. Chung. A biomechanical and evolutionary perspective on the function of the lumbrical muscle. J. Hand Surg. 39(1):149–155, 2014.

    Article  Google Scholar 

  66. Wu, J., K. N. An, R. G. Cutlip, and R. G. Dong. A practical biomechanical model of the index finger simulating the kinematics of the muscle/tendon excursions. Bio-Med. Mater. Eng. 20:89–97, 2010.

    Google Scholar 

  67. Wu, M., and R. Balakrishna, 2003. Multi-finger and whole hand gestural interaction techniques for multi-user tabletop displays. Proceedings of the 16th annual ACM symposium on User interface software and technology.

  68. Yoshii, Y., H. R. Villarraga, J. Henderson, C. Zhao, K. N. An, and P. C. Amadio. Speckle tracking ultrasound for assessment of the relative motion of flexor tendon and subsynovial connective tissue in the human carpal tunnel. Ultrasound Med. Biol. 35(12):1973–1981, 2009.

    Article  PubMed Central  PubMed  Google Scholar 

  69. Zajac, F. E., and G. L. Cottlieb. Muscle and tendon: properties, models, scaling, and application to biomechancis and motor control. Crit. Rev. Biomed. Eng. 17(4):359–411, 1989.

    CAS  PubMed  Google Scholar 

  70. Zatsiorsky, V. M. Kinematics of human motion. Champaign, IL: Human Kinetics, 1998.

    Google Scholar 

  71. Zhang, X., A. Kuo, and D. Chaffin. Optimization-based differential kinematic modeling exhibits a velocity-control strategy for dynamic posture determination in seated reaching movements. J. Biomech. 31:1035–1042, 1998.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by a Grant from the National Science Foundation (NSF 0964220). We thank Cecil Lozano for initial contributions to the project. We thank Aaron Kociolek and Alexander MacIntosh (McMaster University) and Christopher Gatti, (Rensselaer Polytechnic Institute) for sharing their OpenSim models. We wish to express our deep gratitude to Dr. Kai-Nan An (Mayo Clinic College of Medicine) and Dr. John Z. Wu (National Institute for Occupational Safety) for helpful discussions regarding coordinate transformation. Moreover, we would like to thank Dr. Panagiotis Artemiadis, Patrick Phelan, Veronica Santos and Huei-Ping Huang for their valuable comments on this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Devin L. Jindrich.

Additional information

Associate Editor Peter E. McHugh oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, J.H., Asakawa, D.S., Dennerlein, J.T. et al. Extrinsic and Intrinsic Index Finger Muscle Attachments in an OpenSim Upper-Extremity Model. Ann Biomed Eng 43, 937–948 (2015). https://doi.org/10.1007/s10439-014-1141-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-014-1141-2

Keywords

Navigation