Annals of Biomedical Engineering

, Volume 42, Issue 12, pp 2589–2599 | Cite as

Epidermal Differentiation of Stem Cells on Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) Nanofibers

  • Dhakshinamoorthy Sundaramurthi
  • Uma Maheswari Krishnan
  • Swaminathan SethuramanEmail author


Nanomaterials with stem cells have evolved as a promising therapeutic strategy to regenerate various tissues. Tissue engineered grafts with bone marrow derived mesenchymal stem cells (BM-MSCs) can offer a cell-based therapeutic strategy for deep wounds like burns and traumatic ulcers. In this study, we have fabricated poly(3-hydroxybutyrate-co-3-hydroxyvalerate (PHBV) nanofibers through electrospinning. The adhesion, proliferation and epidermal differentiation of BM-MSCs on PHBV nanofibers were investigated. Epidermal differentiation media containing epidermal growth factor (EGF), insulin, 3,3′,5-triiodo-l-thyronine (T3), Hydrocortisone and 1α, 25-dihydroxyvitamin (D3) were used to trigger differentiation of BM-MSCs on PHBV. The proliferation of BM-MSCs on PHBV was significantly higher than the tissue culture polystyrene (TCPS) control (p < 0.05). Live/dead staining of BM-MSCs on PHBV nanofibers confirmed the change in morphology of BM-MSCs from spindle to polygonal shape indicating their differentiation into keratinocytes. The expression levels of the genes keratin (early), filaggrin (intermediate) and involucrin (late) that are involved in epidermal differentiation were upregulated in a stage-specific manner. Our results demonstrate the potential of PHBV nanofibers in promoting adhesion and differentiation of mesenchymal stem cells. This novel cellular nanofiber construct can be a better alternative to the existing therapies for skin tissue engineering.

Graphical Abstract

(1) PHBV nanofibrous scaffold promotes adhesion of bone marrow derived mesenchymal stem cells. (2) Nano geometry of the scaffold favors the epidermal differentiation of stem cells. (3) This novel scaffold-stem cells construct could be used as dermal substitute.


Nanofibers Stem cells Wound healing Tissue engineering 



We sincerely acknowledge the Nano Mission (SR/S5/NM-07/2006 and SR/NM/PG-16/2007) and FIST (SR/FST/LSI-327/2007 & SR/FST/LSI-058/2010), Department of Science & Technology, India. We also acknowledge the financial support from Prof. T. R. Rajagopalan R&D Cell of SASTRA University. The first author acknowledges the SRF support from the Council of Scientific & Industrial Research (09/1095/(0002)/2013/EMR-I).

Conflict of interest

The authors declare that they have no competing interests.


  1. 1.
    Bertrand-Vallery, V., E. Boilan, N. Ninane, C. Demazy, B. Friguet, O. Toussaint, Y. Poumay, and F. Debacq-Chainiaux. Repeated exposures to UVB induce differentiation rather than senescence of human keratinocytes lacking p16INK-4A. Biogerontology 11:167–181, 2010.PubMedCrossRefGoogle Scholar
  2. 2.
    Biazar, E., and S. H. Keshel. Chitosan-cross-linked nanofibrous PHBV nerve guide for rat sciatic nerve regeneration across a defect bridge. ASAIO J. 59:651–659, 2013.PubMedCrossRefGoogle Scholar
  3. 3.
    Cai, Y. Z., L. L. Wang, H. X. Cai, Y. Y. Qi, X. H. Zou, and H. W. Ouyang. Electrospun nanofibrous matrix improves the regeneration of dense cortical bone. J. Biomed. Mater. Res. Part A 95:49–57, 2010.CrossRefGoogle Scholar
  4. 4.
    Candi, E., R. Schmidt, and G. Melino. The cornified envelope: a model of cell death in the skin. Nat. Rev. Mol. Cell Biol. 6:328–340, 2005.PubMedCrossRefGoogle Scholar
  5. 5.
    Dornseifer, U., D. Lonic, T. I. Gerstung, F. Herter, A. M. Fichter, C. Holm, T. Schuster, and M. Ninkovic. The ideal split-thickness skin graft donor-site dressing: a clinical comparative trial of a modified polyurethane dressing and aquacel. Plast. Reconstr. Surg. 128:918–924, 2011.PubMedCrossRefGoogle Scholar
  6. 6.
    Hu, Y. J., X. Wei, W. Zhao, Y. S. Liu, and G. Q. Chen. Biocompatibility of poly (3-hydroxybutyrate-co-3-hydroxyvalerate-co-3-hydroxyhexanoate) with bone marrow mesenchymal stem cells. Acta Biomater. 5:1115–1125, 2009.PubMedCrossRefGoogle Scholar
  7. 7.
    Jensen, J.-M., R. Fölster-Holst, A. Baranowsky, M. Schunck, S. Winoto-Morbach, C. Neumann, S. Schütze, and E. Proksch. Impaired sphingomyelinase activity and epidermal differentiation in atopic dermatitis. J. Invest. Dermatol. 122:1423–1431, 2004.PubMedCrossRefGoogle Scholar
  8. 8.
    Jin, G., M. P. Prabhakaran, and S. Ramakrishna. Stem cell differentiation to epidermal lineages on electrospun nanofibrous substrates for skin tissue engineering. Acta Biomater. 7:3113–3122, 2011.PubMedCrossRefGoogle Scholar
  9. 9.
    Kazemnejad, S., A. Allameh, M. Soleimani, A. Gharehbaghian, Y. Mohammadi, N. Amirizadeh, S. Kaviani, M. Jazayeri, and M. Amani. Development of a novel three-dimensional biocompatible nanofibrous scaffold for the expansion and hepatogenic differentiation of human bone marrow mesenchymal stem cells. Iran J. Biotechnol. 5:201–211, 2007.Google Scholar
  10. 10.
    Krause, D. S., N. D. Theise, M. I. Collector, O. Henegariu, S. Hwang, R. Gardner, S. Neutzel, and S. J. Sharkis. Multi-organ, multi-lineage engraftment by a single bone marrow-derived stem cell. Cell 105:369–377, 2001.PubMedCrossRefGoogle Scholar
  11. 11.
    Kuppan, P., S. Sethuraman, and U. M. Krishnan. PCL and PCL-gelatin nanofibers as esophageal tissue scaffolds: optimization, characterization and cell–matrix interactions. J. Biomed. Nanotechnol. 9:1540–1555, 2013.PubMedCrossRefGoogle Scholar
  12. 12.
    Kuppan, P., K. S. Vasanthan, D. Sundaramurthi, U. M. Krishnan, and S. Sethuraman. Development of poly (3-hydroxybutyrate-co-3-hydroxyvalerate) fibers for skin tissue engineering: effects of topography, mechanical, and chemical stimuli. Biomacromolecules 12:3156–3165, 2011.PubMedCrossRefGoogle Scholar
  13. 13.
    Lakshmanan, R., U. M. Krishnan, and S. Sethuraman. Living cardiac patch: the elixir for cardiac regeneration. Expert Opin. Biol. Ther. 12:1623–1640, 2012.PubMedCrossRefGoogle Scholar
  14. 14.
    Li, W. J., R. Tuli, X. Huang, P. Laquerriere, and R. S. Tuan. Multilineage differentiation of human mesenchymal stem cells in a three-dimensional nanofibrous scaffold. Biomaterials 26:5158–5166, 2005.PubMedCrossRefGoogle Scholar
  15. 15.
    Lü, L. X., Y. Y. Wang, X. Mao, Z. D. Xiao, and N. P. Huang. The effects of PHBV electrospun fibers with different diameters and orientations on growth behavior of bone-marrow-derived mesenchymal stem cells. Biomed. Mater. 7:015002, 2012.PubMedCrossRefGoogle Scholar
  16. 16.
    Ma, K., F. Laco, S. Ramakrishna, S. Liao, and C. K. Chan. Differentiation of bone marrow-derived mesenchymal stem cells into multi-layered epidermis-like cells in 3D organotypic coculture. Biomaterials 30:3251–3258, 2009.PubMedCrossRefGoogle Scholar
  17. 17.
    Ma, K., S. Liao, L. He, J. Lu, S. Ramakrishna, and C. K. Chan. Effects of nanofiber/stem cell composite on wound healing in acute full-thickness skin wounds. Tissue Eng. A 17:1413–1424, 2011.CrossRefGoogle Scholar
  18. 18.
    MacNeil, S. Progress and opportunities for tissue-engineered skin. Nature 445:874–880, 2007.PubMedCrossRefGoogle Scholar
  19. 19.
    Metcalfe, A. D., and M. W. Ferguson. Tissue engineering of replacement skin: the crossroads of biomaterials, wound healing, embryonic development, stem cells and regeneration. J. R. Soc. Interface 4:413–437, 2007.PubMedCentralPubMedCrossRefGoogle Scholar
  20. 20.
    Micallef, L., F. Belaubre, A. Pinon, C. Jayat-Vignoles, C. Delage, M. Charveron, and A. Simon. Effects of extracellular calcium on the growth-differentiation switch in immortalized keratinocyte HaCaT cells compared with normal human keratinocytes. Exp. Dermatol. 18:143–151, 2009.PubMedCrossRefGoogle Scholar
  21. 21.
    Pascu, E. I., J. Stokes, and G. B. McGuinness. Electrospun composites of PHBV, silk fibroin and nano-hydroxyapatite for bone tissue engineering. Mater. Sci. Eng. C 33:4905–4916, 2013.CrossRefGoogle Scholar
  22. 22.
    Păunescu, V., E. Deak, D. Herman, I. R. Siska, C. Bunu, S. Anghel, C. A. Tatu, T. I. Oprea, R. Henschler, and B. Rüster. In vitro differentiation of human mesenchymal stem cells to epithelial lineage. J. Cell Mol. Med. 11:502–508, 2007.PubMedCrossRefGoogle Scholar
  23. 23.
    Prelle, K., N. Zink, and E. Wolf. Pluripotent stem cells–model of embryonic development, tool for gene targeting, and basis of cell therapy. Anat. Histol. Embryol. 31:169–186, 2002.PubMedCrossRefGoogle Scholar
  24. 24.
    Ravichandran, R., S. Gandhi, D. Sundaramurthi, S. Sethuraman, and U. M. Krishnan. Hierarchical mesoporous silica nanofibers as multifunctional scaffolds for bone tissue regeneration. J. Biomater. Sci. Polym. Ed. 24:1988–2005, 2013.PubMedCrossRefGoogle Scholar
  25. 25.
    Ravichandran, R., D. Sundaramurthi, S. Gandhi, S. Sethuraman, and U. M. Krishnan. Bioinspired hybrid mesoporous silica–gelatin sandwich construct for bone tissue engineering. Microporous Mesoporous Mater. 187:53–62, 2014.CrossRefGoogle Scholar
  26. 26.
    Rochefort, G. Y., B. Delorme, A. Lopez, O. Herault, P. Bonnet, P. Charbord, V. Eder, and J. Domenech. Multipotential mesenchymal stem cells are mobilized into peripheral blood by hypoxia. Stem Cells 24:2202–2208, 2006.PubMedCrossRefGoogle Scholar
  27. 27.
    Sasaki, M., R. Abe, Y. Fujita, S. Ando, D. Inokuma, and H. Shimizu. Mesenchymal stem cells are recruited into wounded skin and contribute to wound repair by transdifferentiation into multiple skin cell type. J. Immunol. 180:2581–2587, 2008.PubMedCrossRefGoogle Scholar
  28. 28.
    Sethuraman, S., L. S. Nair, S. El-Amin, M. T. N. Nguyen, Y. E. Greish, J. D. Bender, P. W. Brown, H. R. Allcock, and C. T. Laurencin. Novel low temperature setting nanocrystalline calcium phosphate cements for bone repair: osteoblast cellular response and gene expression studies. J. Biomed. Mater. Res., Part A 82:884–891, 2007.CrossRefGoogle Scholar
  29. 29.
    Sethuraman, S., L. S. Nair, S. El-Amin, M.-T. Nguyen, A. Singh, Y. E. Greish, H. R. Allcock, P. W. Brown, and C. T. Laurencin. Development and characterization of biodegradable nanocomposite injectables for orthopaedic applications based on polyphosphazenes. J. Biomater. Sci. Polym. Ed. 22:733–752, 2011.PubMedCrossRefGoogle Scholar
  30. 30.
    Sethuraman, S., L. S. Nair, S. El-Amin, M.-T. Nguyen, A. Singh, N. Krogman, Y. E. Greish, H. R. Allcock, P. W. Brown, and C. T. Laurencin. Mechanical properties and osteocompatibility of novel biodegradable alanine based polyphosphazenes: side group effects. Acta Biomater. 6:1931–1937, 2010.PubMedCentralPubMedCrossRefGoogle Scholar
  31. 31.
    Smith Callahan, L. A., S. Xie, I. A. Barker, J. Zheng, D. H. Reneker, A. P. Dove, and M. L. Becker. Directed differentiation and neurite extension of mouse embryonic stem cell on aligned poly (lactide) nanofibers functionalized with YIGSR peptide. Biomaterials 34:9089–9095, 2013.CrossRefGoogle Scholar
  32. 32.
    Steinert, P. M., and L. N. Marekov. Direct evidence that involucrin is a major early isopeptide cross-linked component of the keratinocyte cornified cell envelope. J. Biol. Chem. 272:2021–2030, 1997.PubMedCrossRefGoogle Scholar
  33. 33.
    Subramanian, A., U. M. Krishnan, and S. Sethuraman. Fabrication of uniaxially aligned 3D electrospun scaffolds for neural regeneration. Biomed. Mater. 6:025004, 2011.PubMedCrossRefGoogle Scholar
  34. 34.
    Sundaramurthi, D., U. M. Krishnan, and S. Sethuraman. Biocompatibility of Poly (3-hydroxybutyrate-co3-hydroxyvalerate)(PHBV) Nanofibers for Skin Tissue Engineering. J. Biomed. Nanotechnol. 9:1383–1392, 2013.PubMedCrossRefGoogle Scholar
  35. 35.
    Sundaramurthi, D., U. M. Krishnan, and S. Sethuraman. Electrospun nanofibers as scaffolds for skin tissue engineering. Polym. Rev. 54:348–376, 2014.CrossRefGoogle Scholar
  36. 36.
    Sundaramurthi, D., K. S. Vasanthan, P. Kuppan, U. M. Krishnan, and S. Sethuraman. Electrospun nanostructured chitosan–poly (vinyl alcohol) scaffolds: a biomimetic extracellular matrix as dermal substitute. Biomed. Mater. 7:045005, 2012.PubMedCrossRefGoogle Scholar
  37. 37.
    Xing, Z. C., W. P. Chae, J. Y. Baek, M. J. Choi, Y. Jung, and I. K. Kang. In vitro assessment of antibacterial activity and cytocompatibility of silver-containing PHBV nanofibrous scaffolds for tissue engineering. Biomacromolecules 11:1248–1253, 2010.PubMedCrossRefGoogle Scholar

Copyright information

© Biomedical Engineering Society 2014

Authors and Affiliations

  • Dhakshinamoorthy Sundaramurthi
    • 1
  • Uma Maheswari Krishnan
    • 1
  • Swaminathan Sethuraman
    • 1
    Email author
  1. 1.School of Chemical & Biotechnology, Centre for Nanotechnology & Advanced Biomaterials (CeNTAB)SASTRA UniversityThanjavurIndia

Personalised recommendations