Advertisement

Annals of Biomedical Engineering

, Volume 42, Issue 12, pp 2466–2479 | Cite as

Calculating Intraventricular Pressure Difference Using a Multi-Beat Spatiotemporal Reconstruction of Color M-Mode Echocardiography

  • Pavlos P. VlachosEmail author
  • Casandra L. Niebel
  • Sreyashi Chakraborty
  • Min Pu
  • William C. Little
Article

Abstract

This work aims to provide a methodology to improve the analysis of color-M-Mode (CMM) echocardiograms, as used to assess cardiac function. Specifically, we presented a methodology for the combined analysis of multiple heartbeat cycles and improve the accuracy of intraventricular pressure difference (IVPD) calculation. CMM sweep speed and heartbeat variations impact the accuracy of IVPD calculation. Proper orthogonal decomposition (POD) is used to decompose and reconstruct a representative CMM scan from multiple heartbeats, with reduced noise and improved resolution. For three demonstration subjects, at least 9 beats were recorded at sweep speeds of 25, 50, 75, 100, and 150 mm/s. For all subjects, the beats from the 25 mm/s group resulted in low IVPD (median values: 1.93, 1.94 and 3.15 mmHg) compared to the 150 mm/s group (median values: 3.67, 3.98 and 5.18 mmHg). Reconstructed heartbeats for these subjects returned IVPD of 4.74, 3.23, and 5.14 mmHg. These results demonstrate the strong dependence of IVPD on the temporal resolution and that the proposed reconstruction method can return more accurate IVPDs for low resolution CMMs. This new method was applied to 5 clinical cohorts (3 normals, 1 restrictive, and 1 hypertrophied) and returned increased median IVPD from 2.93–4.41 mmHg for Normal 1, 2.14–3.30 mmHg for Normal 2, 1.84–3.64 mmHg for Normal 3, 2.28–3.00 mmHg for restrictive and 1.56–1.69 mmHg for hypertrophied. Our results show that beat-to-beat variations and temporal resolution affect the IVPD. Our new method rectifies low resolutions and beat-to-beat variability of the CMM data and allows for more accurate IVPD measurement independent of scanner acquisition settings and beat variations.

Keywords

Color M-Mode echocardiography Intraventricular pressure difference Proper orthogonal decomposition Multi-beat reconstruction Temporal resolution 

Notes

Acknowledgments

This material is based upon work supported under a National Institutes of Health R21 Grant No. HL106276-01A1. The authors have no conflicts of interest to report.

References

  1. 1.
    Aubry, Nadine, Régis Guyonnet, and Ricardo Lima. Spatiotemporal analysis of complex signals: theory and applications. J. Stat. Phys. 64(3-4):683–739, 1991.CrossRefGoogle Scholar
  2. 2.
    Berkooz, Gal, Philip Holmes, and John L. Lumley. The proper orthogonal decomposition in the analysis of turbulent flows. Annu. Rev. Fluid Mech. 25(1):539–575, 1993.CrossRefGoogle Scholar
  3. 3.
    Claessens, T. E., J. De Sutter, D. Vanhercke, P. Segers, and P. R. Verdonck. New echocardiographic applications for assessing global left ventricular diastolic function. Ultrasound Med. Biol. 33(6):823–841, 2007.PubMedCrossRefGoogle Scholar
  4. 4.
    Devereux, R. B., D. R. Alonso, E. M. Lutas, G. J. Gottlieb, E. Campo, I. Sachs, and N. Reichek. Echocardiographic assessment of left ventricular hypertrophy: comparison to necropsy findings. Am. J. Cardiol. 57(6):450–458, 1986.PubMedCrossRefGoogle Scholar
  5. 5.
    Ebbers, T., L. Wigstrom, A. F. Bolger, B. Wranne, and M. Karlsson. Noninvasive measurement of time-varying three-dimensional relative pressure fields within the human heart. J. Biomech. Eng. 124(3):288–293, 2002.Google Scholar
  6. 6.
    Firstenberg, M. S., P. M. Vandervoort, N. L. Greenberg, N. G. Smedira, P. M. McCarthy, M. J. Garcia, and J. D. Thomas. Noninvasive estimation of transmitral pressure drop across the normal mitral valve in humans: importance of convective and inertial forces during left ventricular filling. J. Am. Coll. Cardiol. 36(6):1942–1949, 2000.PubMedCrossRefGoogle Scholar
  7. 7.
    Greenberg, N. L., S. Krucinski, P. M. Vandervoort, and J. D. Thomas. Importance of scanline orientation for color Doppler M-mode diastolic inflow patterns and pressure gradient calculations. J. Am. Coll. Cardiol. 29(2):49166–49166, 1997.Google Scholar
  8. 8.
    Greenberg, N. L., P. M. Vandervoort, M. S. Firstenberg, M. J. Garcia, and J. D. Thomas. Estimation of diastolic intraventricular pressure gradients by Doppler M-mode echocardiography. Am. J. Physiol. Heart Circ. Physiol. 280(6):H2507–H2515, 2001.PubMedGoogle Scholar
  9. 9.
    Greenberg, N. L., P. M. Vandervoort, and J. D. Thomas. Instantaneous diastolic transmitral pressure differences from color Doppler M mode echocardiography. Am. J. Physiol. Heart Circ. Physiol. 271(4):H1267–H1276, 1996.Google Scholar
  10. 10.
    Hinkley, D. V. Inference about the change-point from cumulative sum tests. Biometrika 58(3):509–523, 1971.CrossRefGoogle Scholar
  11. 11.
    Kriegseis, J. Common-base proper orthogonal decomposition as a means of quantitative data comparison. Meas. Sci. Technol. 21(8):085403, 2010.CrossRefGoogle Scholar
  12. 12.
    Krittian, Sebastian, Pablo Lamata, Christian Michler, David A. Nordsletten, Jelena Bock, Chris P. Bradley, Alex Pitcher, Philip J. Kilner, Michael Markl, and Nic P. Smith. A finite-element approach to the direct computation of relative cardiovascular pressure from time-resolved MR velocity data. Med. Image Anal. 16(5):1029–1037, 2012.PubMedCrossRefGoogle Scholar
  13. 13.
    Lang, R. M., M. Bierig, R. B. Devereux, F. A. Flachskampf, E. Foster, P. A. Pellikka, M. H. Picard, M. J. Roman, J. Seward, J. S. Shanewise, S. D. Solomon, K. T. Spencer, M. St John Sutton, and W. J. Stewart. Recommendations for chamber quantification: a report from the American Society of Echocardiography’s guidelines and standards committee and the chamber quantification writing group, developed in conjunction with the European Association of Echocardiography, a branch of the European Society of Cardiology. J. Am. Soc. Echocardiogr. 18(12):1440–1463, 2005.Google Scholar
  14. 14.
    Little, W. C. Diastolic dysfunction beyond distensibility—adverse effects of ventricular dilatation. Circulation 112(19):2888–2890, 2005.PubMedGoogle Scholar
  15. 15.
    Mosteller, R. D. Simplified calculation of body-surface area. N. Engl. J. Med. 317(17):1098, 1987.PubMedGoogle Scholar
  16. 16.
    Nagueh, S. F., C. P. Appleton, T. C. Gillebert, P. N. Marino, J. K. Oh, O. A. Smiseth, A. D. Waggoner, F. A. Flachskampf, P. A. Pellikka, and A. Evangelisa. Recommendations for the evaluation of left ventricular diastolic function by echocardiography. Eur. J. Echocardiogr. 10(2):165–193, 2009.PubMedCrossRefGoogle Scholar
  17. 17.
    Rojo-Álvarez, J. L., J. Bermejo, A. B. Rodríguez-González, A. Martínez-Fernández, R. Yotti, M. A. García-Fernández, and J. Carlos Antoranz. Impact of image spatial, temporal, and velocity resolutions on cardiovascular indices derived from color-Doppler echocardiography. Med. Image Anal. 11(6):513–525, 2007.PubMedCrossRefGoogle Scholar
  18. 18.
    Rovner, A., R. Smith, N. L. Greenberg, E. M. Tuzcu, N. Smedira, H. M. Lever, J. D. Thomas, and M. J. Garcia. Improvement in diastolic intraventricular pressure gradients in patients with HOCM after ethanol septal reduction. Am. J. Physiol. Heart Circ. Physiol. 285(6):H2492–H2499, 2003.PubMedGoogle Scholar
  19. 19.
    Sirovich, L. Chaotic dynamics of coherent structures. Phys. D 37(1–3):126, 1989.CrossRefGoogle Scholar
  20. 20.
    Smith, T. R. Low-dimensional modelling of turbulence using the proper orthogonal decomposition: a tutorial. Nonlinear Dyn. 41(1–3):275–307, 2005.CrossRefGoogle Scholar
  21. 21.
    Stewart, K. C., R. Kumar, J. J. Charonko, T. Ohara, P. P. Vlachos, and W. C. Little. Evaluation of LV diastolic function from color M-Mode echocardiography. JACC: Cardiovascular Imaging 4(1):37–46, 2011.PubMedCrossRefGoogle Scholar
  22. 22.
    Taylor, W. A. Change-Point Analysis: A Powerful New Tool For Detecting Changes. 2000. Retrieved July 16, 2008, from http://www.variation.com/cpa/tech/changepoint.html.
  23. 23.
    Yotti, R., J. Bermejo, J. C. Antoranz, M. M. Desco, C. Cortina, J. L. Rojo-Alvarez, C. Allue, L. Martin, M. Moreno, J. A. Serrano, R. Munoz, and M. A. Garcia-Fernandez. A noninvasive method for assessing impaired diastolic suction in patients with dilated cardiomyopathy. Circulation 112(19):2921–2929, 2005.PubMedGoogle Scholar
  24. 24.
    Yotti, R., J. Bermejo, M. M. Desco, J. C. Antoranz, J. L. Rojo-Álvarez, C. Cortina, C. Allué, H. Rodríguez-Abella, M. Moreno, and M. A. García-Fernández. Doppler-derived ejection intraventricular pressure gradients provide a reliable assessment of left ventricular systolic chamber function. Circulation 112(12):1771–1779, 2005.PubMedCrossRefGoogle Scholar

Copyright information

© Biomedical Engineering Society 2014

Authors and Affiliations

  • Pavlos P. Vlachos
    • 1
    Email author
  • Casandra L. Niebel
    • 2
  • Sreyashi Chakraborty
    • 1
  • Min Pu
    • 3
  • William C. Little
    • 4
  1. 1.School of Mechanical EngineeringPurdue UniversityWest LafayetteUSA
  2. 2.Department of Mechanical EngineeringVirginia TechBlacksburgUSA
  3. 3.Section on CardiologyWake Forest School of MedicineWinston-SalemUSA
  4. 4.Department of MedicineUniversity of Mississippi Medical CenterJacksonUSA

Personalised recommendations