Skip to main content
Log in

Integration of Clinical Data Collected at Different Times for Virtual Surgery in Single Ventricle Patients: A Case Study

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Newborns with single ventricle physiology are usually palliated with a multi-staged procedure. When cardiovascular complications e.g., collateral vessel formation occur during the inter-stage periods, further treatments are required. An 8-month-old patient, who underwent second stage (i.e., bi-directional Glenn, BDG) surgery at 4 months, was diagnosed with a major veno-venous collateral vessel (VVC) which was endovascularly occluded to improve blood oxygen saturations. Few clinical data were collected at 8 months, whereas at 4 months a more detailed data set was available. The aim of this study is threefold: (i) to show how to build a patient-specific model describing the hemodynamics in the presence of VVC, using patient-specific clinical data collected at different times; (ii) to use this model to perform virtual VVC occlusion for quantitative hemodynamics prediction; and (iii) to compare predicted hemodynamics with post-operative measurements. The three-dimensional BDG geometry, resulting from the virtual surgery on the first stage model, was coupled with a lumped parameter model (LPM) of the 8-month patient’s circulation. The latter was developed by scaling the 4-month LPM to account for changes in vascular impedances due to growth and adaptation. After virtual VVC closure, the model confirmed the 2 mmHg BDG pressure increase, as clinically observed, suggesting the importance of modeling vascular adaptation following the BDG procedure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

Abbreviations

APC:

Aorto-pulmonary collateral vessels

BDG:

Bi-directional Glenn

BSA:

Body surface area

CO :

Cardiac output

CHD:

Congenital heart disease

IVC:

Inferior vena cava

LB:

Lower body

LPM:

Lumped parameter model

MRI:

Magnetic resonance imaging

O2 :

Oxygen

PA:

Pulmonary artery

PVR :

Pulmonary vascular resistance

PVWP:

Pulmonary venous wedge pressure

RPA:

Right pulmonary artery

SVC:

Superior vena cava

SVR LB :

Lower body systemic vascular resistance

SVR UB :

Upper body systemic vascular resistance

3D:

Three-dimensional

UB:

Upper body

VVC:

Veno-venous collateral vessel

References

  1. Baretta, A., C. Corsini, A. L. Marsden, I. E. Vignon-Clementel, T.-Y. Hsia, G. Dubini, F. Migliavacca, and G. Pennati, The Modeling of Congenital Hearts Alliance (MOCHA). Respiratory effects on hemodynamics in patient-specific CFD models of the Fontan circulation under exercise conditions. Eur. J. Mech. B-Fluid. 35:61–69, 2012.

  2. Baretta, A., C. Corsini, W. Yang, I. E. Vignon-Clementel, A. L. Marsden, J. A. Feinstein, T.-Y. Hsia, G. Dubini, F. Migliavacca, G. Pennati, and The Modeling of Congenital Hearts Alliance (MOCHA) Investigators. Virtual surgeries in patients with congenital heart disease: a multi-scale modelling test case. Philos. Trans. R. Soc. A 369:4316–4330, 2011.

  3. Coppoletta, J. M., and S. B. Wolbach. Body length and organ weights of infants and children. A study of the body length and normal weights of the more important vital organs of the body between birth and twelve years of age. Am. J. Pathol. 9:55–70, 1933.

    CAS  PubMed Central  PubMed  Google Scholar 

  4. Corsini, C., C. Baker, E. Kung, S. Schievano, G. Arbia, A. Baretta, G. Biglino, F. Migliavacca, G. Dubini, G. Pennati, A. Marsden, I. Vignon-Clementel, A. Taylor, T. Y. Hsia, and A. Dorfman for the Modeling of Congenital Hearts Alliance Mocha Investigators. An integrated approach to patient-specific predictive modeling for single ventricle heart palliation. Comput. Methods Biomech. Biomed. Eng. 17:1572–1589, 2014.

  5. de Zélicourt, D. A., C. M. Haggerty, K. S. Sundareswaran, B. S. Whited, J. R. Rossignac, K. R. Kanter, J. W. Gaynor, T. L. Spray, F. Sotiropoulos, M. A. Fogel, and A. P. Yoganathan. Individualized computer-based surgical planning to address pulmonary arteriovenous malformations in patients with a single ventricle with an interrupted inferior vena cava and azygous continuation. J. Thorac. Cardiovasc. Surg. 141:1170–1177, 2011.

    Article  PubMed Central  PubMed  Google Scholar 

  6. Fontan, F., and E. Baudet. Surgical repair of tricuspid atresia. Thorax 26:240–248, 1971.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Giannessi, M., M. Ursino, and W. B. Murray. The design of a digital cerebrovascular simulation model for teaching and research. Anesth. Analg. 107:1997–2008, 2008.

    Article  PubMed  Google Scholar 

  8. Haggerty, C. M., D. A. de Zelicourt, K. Sundareswaran, K. Pekkan, B. Whited, J. Rossignac, M. A. Fogel, and A. P. Yoganathan. Hemodynamic assessment of virtual surgery options for a failing Fontan using lumped parameter simulation. Comput. Cardiol. 36:389–392, 2009.

    Google Scholar 

  9. Hill, K. D., D. Janssen, D. P. Ohmstede, and T. P. Doyle. Pulmonary venous wedge pressure provides a safe and accurate estimate of pulmonary arterial pressure in children with shunt-dependent pulmonary blood flow. Catheter. Cardiovasc. Interv. 74:747–752, 2009.

    Article  PubMed  Google Scholar 

  10. Kim, H. J., K. E. Jansen, and C. A. Taylor. Incorporating autoregulatory mechanisms of the cardiovascular system in three-dimensional finite element models of arterial blood flow. Ann. Biomed. Eng. 38:2314–2330, 2010.

    Article  CAS  PubMed  Google Scholar 

  11. Kung, E., A. Baretta, C. Baker, G. Arbia, G. Biglino, C. Corsini, S. Schievano, I. E. Vignon-Clementel, G. Dubini, G. Pennati, A. Taylor, A. Dorfman, A. M. Hlavacek, A. L. Marsden, T. Y. Hsia, F. Migliavacca, and the Modeling of Congenital Hearts Alliance (MOCHA) Investigators. Predictive modeling of the virtual Hemi-Fontan operation for second stage single ventricle palliation: two patient-specific cases. J. Biomech. 46:423–429, 2013.

  12. Li, J., A. Bush, I. Schulze-Neick, D. J. Penny, A. N. Redington, and L. S. Shekerdemian. Measured versus estimated oxygen consumption in ventilated patients with congenital heart disease: the validity of predictive equations. Crit. Care Med. 31:1235–1240, 2003.

    Article  PubMed  Google Scholar 

  13. Li, M., D. E. Scott, R. Shandas, K. R. Stenmark, and W. Tan. High pulsatility flow induces adhesion molecule and cytokine mRNA expression in distal pulmonary artery endothelial cells. Ann. Biomed. Eng. 37:1082–1092, 2009.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Magee, A. G., B. W. McCrindle, J. Mawson, L. N. Benson, W. G. Williams, and R. M. Freedom. Systemic venous collateral development after the bidirectional cavopulmonary anastomosis. Prevalence and predictors. J. Am. Coll. Cardiol. 32:502–508, 1998.

    Article  CAS  PubMed  Google Scholar 

  15. Marsden, A. L. Simulation based planning of surgical interventions in pediatric cardiology. Phys. Fluids 25:101303, 2013.

  16. McElhinney, D. B., V. M. Reddy, F. L. Hanley, and P. Moore. Systemic venous collateral channels causing desaturation after bidirectional cavopulmonary anastomosis: evaluation and management. J. Am. Coll. Cardiol. 30:817–824, 1997.

    Article  CAS  PubMed  Google Scholar 

  17. Migliavacca, F., R. Balossino, G. Pennati, G. Dubini, T. Y. Hsia, M. R. de Leval, and E. L. Bove. Multiscale modelling in biofluidynamics: application to reconstructive paediatric cardiac surgery. J. Biomech. 39:1010–1020, 2006.

    Article  PubMed  Google Scholar 

  18. Pennati, G., C. Corsini, D. Cosentino, T. Y. Hsia, V. S. Luisi, G. Dubini, and F. Migliavacca. Boundary conditions of patient-specific fluid dynamics modelling of cavopulmonary connections: possible adaptation of pulmonary resistances results in a critical issue for a virtual surgical planning. Interface Focus 1:297–307, 2011.

    Article  PubMed Central  PubMed  Google Scholar 

  19. Pennati, G., and R. Fumero. Scaling approach to study the changes through the gestation of human fetal cardiac and circulatory behaviors. Ann. Biomed. Eng. 28:442–452, 2000.

    Article  CAS  PubMed  Google Scholar 

  20. Quarteroni, A., S. Ragni, and A. Veneziani. Coupling between lumped and distributed models for blood flow problems. Comput. Visual. Sci. 4:111–124, 2001.

    Article  Google Scholar 

  21. Troianowski, G., C. A. Taylor, J. A. Feinstein, and I. E. Vignon-Clementel. Three-dimensional simulations in BDG patients: clinically based boundary conditions, hemodynamic results and sensitivity to input data. J. Biomech. Eng. 133:111006, 2011.

    Article  CAS  PubMed  Google Scholar 

  22. Vignon-Clementel, I. E., A. L. Marsden, and J. A. Feinstein. A primer on computational simulation in congenital heart disease for the clinician. Prog. Pediatr. Cardiol. 30:3–13, 2010.

    Article  Google Scholar 

Download references

Acknowledgments

This study was supported by Fondation Leducq, Paris, through the Trans-Atlantic Network of Excellence for Cardiovascular Research grant ‘Multi-Scale Modelling of Single Ventricle Hearts for Clinical Decision Support’.

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Consortia

Corresponding author

Correspondence to Giancarlo Pennati.

Additional information

Associate Editor Umberto Morbiducci oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Corsini, C., Baker, C., Baretta, A. et al. Integration of Clinical Data Collected at Different Times for Virtual Surgery in Single Ventricle Patients: A Case Study. Ann Biomed Eng 43, 1310–1320 (2015). https://doi.org/10.1007/s10439-014-1113-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-014-1113-6

Keywords

Navigation