Advertisement

Annals of Biomedical Engineering

, Volume 42, Issue 12, pp 2512–2523 | Cite as

Locomotor Sensory Organization Test: A Novel Paradigm for the Assessment of Sensory Contributions in Gait

  • Jung Hung Chien
  • Diderik-Jan Anthony Eikema
  • Mukul Mukherjee
  • Nicholas StergiouEmail author
Article

Abstract

Feedback based balance control requires the integration of visual, proprioceptive and vestibular input to detect the body’s movement within the environment. When the accuracy of sensory signals is compromised, the system reorganizes the relative contributions through a process of sensory recalibration, for upright postural stability to be maintained. Whereas this process has been studied extensively in standing using the Sensory Organization Test (SOT), less is known about these processes in more dynamic tasks such as locomotion. In the present study, ten healthy young adults performed the six conditions of the traditional SOT to quantify standing postural control when exposed to sensory conflict. The same subjects performed these six conditions using a novel experimental paradigm, the Locomotor SOT (LSOT), to study dynamic postural control during walking under similar types of sensory conflict. To quantify postural control during walking, the net Center of Pressure sway variability was used. This corresponds to the Performance Index of the center of pressure trajectory, which is used to quantify postural control during standing. Our results indicate that dynamic balance control during locomotion in healthy individuals is affected by the systematic manipulation of multisensory inputs. The sway variability patterns observed during locomotion reflect similar balance performance with standing posture, indicating that similar feedback processes may be involved. However, the contribution of visual input is significantly increased during locomotion, compared to standing in similar sensory conflict conditions. The increased visual gain in the LSOT conditions reflects the importance of visual input for the control of locomotion. Since balance perturbations tend to occur in dynamic tasks and in response to environmental constraints not present during the SOT, the LSOT may provide additional information for clinical evaluation on healthy and deficient sensory processing.

Keywords

Biomechanics Posture Sway variability Sensory Organization Test Performance Index Walking 

Abbreviations

LSOT

Locomotor Sensory Organization Test

SOT

Sensory Organization Test

netCOP

net Center of Pressure

PI

Performance Index

Notes

Acknowledgments

This study was supported by the NASA EPSCoR NNX11AM06A.

References

  1. 1.
    Alexander, M. S., B. W. Flodin, and D. S. Marigold. Prism adaptation and generalization during visually guided locomotor tasks. J. Neurophysiol. 106(2):860–871, 2011.PubMedCrossRefGoogle Scholar
  2. 2.
    Altman, A. R., D. S. Reisman, J. S. Higginson, and I. S. Davis. Kinematic comparison of split-belt and single-belt treadmill walking and the effects of accommodation. Gait Posture. 35:287–291, 2012.PubMedCentralPubMedCrossRefGoogle Scholar
  3. 3.
    Berard, J. R., J. Fung, and A. Lamontagne. Evidence for the use of rotational optic flow cues for locomotor steering in healthy older adults. J. Neurophysiol. 106(3):1089–1096, 2011.PubMedCrossRefGoogle Scholar
  4. 4.
    Black, F. O., C. L. Shupert, F. B. Horak, and L. M. Nashner. Abnormal postural control associated with peripheral vestibular disorders. Prog. Brain Res. 76:263–275, 1988.PubMedCrossRefGoogle Scholar
  5. 5.
    Black, F. O., C. L. Shupert, R. J. Peterka, and L. M. Nashner. Effects of unilateral loss of vestibular function on the vestibule-ocular reflex and postural control. Ann. Otol. Rhinol. Laryngol. 98(11):884–889, 1989.PubMedCrossRefGoogle Scholar
  6. 6.
    Callisaya, M. L., L. Blizzard, J. L. McGinley, M. D. Schmidt, and V. K. Srikanth. Sensorimotor factors affecting gait variability in older people—a population-based study. J. Gerontol. A Biol. Sci. Med. Sci. 65(4):386–392, 2010.PubMedCrossRefGoogle Scholar
  7. 7.
    Cavanaugh, J. T., K. M. Guskiewicz, C. Giuliani, S. Marshall, V. Mercer, and N. Stergiou. Detecting altered postural control after cerebral concussion in athletes with normal postural stability. Br. J. Sports Med. 9(11):805–811, 2005.CrossRefGoogle Scholar
  8. 8.
    Chung, M. J., and M. J. Wang. The change of gait parameters during walking at different percentage of preferred waling speed for healthy adults aged 20-60 years. Gait Posture. 31(1):131–135, 2010.PubMedCrossRefGoogle Scholar
  9. 9.
    Day, B. L., and J. Cole. Vestibular-evoked postural responses in the absence of somatosensory information. Brain 125(Pt 9):2081–2088, 2002.PubMedCrossRefGoogle Scholar
  10. 10.
    Deshpande, N., L. Ferrucci, J. Metter, K. A. Faulkner, E. Strotmeyer, S. Satterfield, A. Schwartz, and E. Simonsick. Association of lower limb cutaneous sensitivity with gait speed in the elderly: the health ABC study. Am. J. Phys. Med. Rehabil. 87(11):921–928, 2008.PubMedCentralPubMedCrossRefGoogle Scholar
  11. 11.
    Deshpande, N., E. J. Metter, and L. Ferrucci. Validity of clinically derived cumulative somatosensory impairment index. Arch. Phys. Med. Rehabil. 91(2):226–232, 2010.PubMedCentralPubMedCrossRefGoogle Scholar
  12. 12.
    Donaldson, C. J., M. E. Hoffer, B. J. Balough, and K. R. Gottshall. Prognostic assessments of medical therapy and vestibular testing in post-traumatic migraine-associated dizziness patients. Otolaryngol. Head Neck Surg. 143(6):820–825, 2010.PubMedCrossRefGoogle Scholar
  13. 13.
    Ernst, M. O., and M. S. Banks. Humans integrate visual and haptic information in a statistically optimal fashion. Nature 415(6870):429–433, 2002.PubMedCrossRefGoogle Scholar
  14. 14.
    Fetsch, C. R., A. H. Turner, G. C. DeAngelis, and D. E. Angelaki. Dynamic reweighting of visual and vestibular cues during self-motion perception. J. Neurosci. 29(49):15601–15612, 2009.PubMedCentralPubMedCrossRefGoogle Scholar
  15. 15.
    Gruhn, M., L. Zehl, and A. Buschges. Straight walking and turning on a slippery surface. J. Exp. Biol. 212:194–209, 2009.PubMedCrossRefGoogle Scholar
  16. 16.
    Ishikawa, K., M. Edo, M. Yokomizo, N. Terada, Y. Okamoto, and K. Togawa. Analysis of gait in patients with peripheral vestibular disorders. ORL J. Otorhinolaryngol. Relat. Specialties 56(6):325–330, 1994.CrossRefGoogle Scholar
  17. 17.
    Ishikawa, K., M. Edo, M. Yokomizo, and K. Togawa. Characteristics of human gait related variables in association with vestibular system disorders. Acta Otolaryngol. Suppl. 520(Pt 1):199–201, 1995.PubMedCrossRefGoogle Scholar
  18. 18.
    Jacobson, G. P., and C. W. Newman. The development of the Dizziness Handicap Inventory. Arch. Otolaryngol. Head Neck Surg. 116:424–427, 1990.PubMedCrossRefGoogle Scholar
  19. 19.
    Jordan, K., J. H. Challis, and K. M. Newell. Walking speed influences on gait cycle variability. Gait Posture. 26(1):128–134, 2007.PubMedCrossRefGoogle Scholar
  20. 20.
    Jordan, K., and K. M. Newell. The structure of variability in human walking and running is speed-dependent. Exerc. Sport Sci. Rev. 36(4):200–204, 2008.PubMedCrossRefGoogle Scholar
  21. 21.
    Kiss, R. M. Comparison between kinematic and ground reaction force techniques for determining gait events during treadmill walking at different speeds. Med. Eng. Phys. 32(6):662–667, 2010.PubMedCrossRefGoogle Scholar
  22. 22.
    Mawase, F., T. Haizler, S. Bar-Haim, and A. Karniel. Kinetic adaptation during locomotion on a split-belt treadmill. J. Neurophysiol. 109:2216–2227, 2013.PubMedCrossRefGoogle Scholar
  23. 23.
    Mergner, T., G. Schweigart, L. Fennell, and C. Maurer. Posture control in vestibular-loss patients. Ann. N. Y. Acad. Sci. 1164:206–215, 2009.PubMedCrossRefGoogle Scholar
  24. 24.
    Mickelborough, J., M. L. van der Linden, J. Richards, and A. R. Ennos. Validity and reliability of a kinematic protocol for determining foot contact events. Gait Posture. 11(1):32–37, 2000.PubMedCrossRefGoogle Scholar
  25. 25.
    Nocera, J., M. Horvat, and C. T. Ray. Effects of home-based exercise on postural control and sensory organization in individuals with Parkinson disease. Parkinsonism Relat. Disord. 15(10):742–745, 2009.PubMedCentralPubMedCrossRefGoogle Scholar
  26. 26.
    O’Conner, S., and A. D. Kuo. Direction-dependent control of balance during walking and standing. J. Neurophysiol. 102:1411–1419, 2009.CrossRefGoogle Scholar
  27. 27.
    Parietti-Winkler, C., G. C. Gauchard, C. Simon, and P. P. Perrin. Pre-operative vestibular pattern and balance compensation after vestibular schwannoma surgery. Neuroscience 72:285–292, 2011.CrossRefGoogle Scholar
  28. 28.
    Patla, A. E., S. D. Prentice, S. Rietdyk, F. Allard, and C. Martin. What guides the selection of alternate foot placement during locomotion in humans? Exp. Brain Res. 128(4):441–450, 1999.PubMedCrossRefGoogle Scholar
  29. 29.
    Patla, A. E., S. S. Tomescu, and M. G. Ishac. What visual information is used for navigation around obstacles in a cluttered environment? Can. J. Physiol. Pharmacol. 82(8–9):682–692, 2004.PubMedCrossRefGoogle Scholar
  30. 30.
    Pearson, K. G. Proprioceptive regulation of locomotion. Curr. Opin. Neurobiol. 5:786–791, 1995.PubMedCrossRefGoogle Scholar
  31. 31.
    Peterka, R. J. Sensorimotor integration in human postural control. J. Neurophysiol. 88(3):1097–1118, 2002.PubMedGoogle Scholar
  32. 32.
    Rossi-Izquierdo, M., S. Santos-Pérez, and A. Soto-Varela. What is the most effective vestibular rehabilitation technique in patients with unilateral peripheral vestibular disorders? Eur. Arch. Otorhinolaryngol. 268(11):1569–1574, 2011.PubMedCrossRefGoogle Scholar
  33. 33.
    Smania, N., A. Picelli, M. Gandolfi, A. Fiaschi, and M. Tinazzi. Rehabilitation of sensorimotor integration deficits in balance impairment of patients with stroke hemiparesis: a before/after pilot study. Neurol. Sci. 29(5):313–319, 2008.PubMedCrossRefGoogle Scholar
  34. 34.
    Thies, S. B., J. K. Richardson, and J. A. Ashton-Miller. Effects of surface irregularity and lighting on step variability during gait: a study in healthy young and older women. Gait Posture. 22(1):26–31, 2005.PubMedCrossRefGoogle Scholar
  35. 35.
    Thies, S. B., J. K. Richardson, T. Demott, and J. A. Ashton-Miller. Influence of an irregular surface and low light on the step variability of patients with peripheral neuropathy during level gait. Gait Posture. 22(1):40–45, 2005.PubMedCrossRefGoogle Scholar
  36. 36.
    Wardman, D. L., J. L. Taylor, and R. C. Fitzpatrick. Effect of galvanic vestibular stimulation on human posture and perception while standing. J. Physiol. 551(Pt 3):1033–1042, 2003.PubMedCentralPubMedCrossRefGoogle Scholar
  37. 37.
    Zeni, Jr., J. A., J. G. Richards, and J. S. Higginson. Two simple methods for determining gait events during treadmill and overground walking using kinematic data. Gait Posture. 27(4):710–714, 2008.PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Biomedical Engineering Society 2014

Authors and Affiliations

  • Jung Hung Chien
    • 1
    • 2
  • Diderik-Jan Anthony Eikema
    • 1
  • Mukul Mukherjee
    • 1
  • Nicholas Stergiou
    • 1
    • 2
    Email author
  1. 1.Biomechanics Research Building, School of Health, Physical Education, and RecreationUniversity of Nebraska at OmahaOmahaUSA
  2. 2.Department of Environmental, Agricultural & Occupational Health, College of Public HealthUniversity of Nebraska Medical CenterOmahaUSA

Personalised recommendations