Annals of Biomedical Engineering

, Volume 42, Issue 12, pp 2405–2415 | Cite as

Chemotherapy-Induced Changes in Cardiac Capillary Permeability Measured by Fluorescent Multiple Indicator Dilution

  • Alicia Fernandez-Fernandez
  • Denny A. Carvajal
  • Tingjun Lei
  • Anthony J. McGoronEmail author


Anthracyclines cause severe irreversible cardiac toxicity. The study of changes in cardiac permeability with chemotherapy could enhance the understanding of mechanisms behind cardiac damage, and provide useful information to evaluate anthracycline cardiotoxicity. Thirty-six rats (12 Sprague–Dawley, 12 Wistar, 12 Fischer-344) were randomly assigned to control (n = 21) or doxorubicin (n = 15), and injected i.p. with a cumulative dose of 18 mg/kg doxorubicin in saline (vehicle) or vehicle alone over 12 days. Echocardiography was performed at baseline and on day 11. An isolated heart experiment was done on day 12 to obtain perfused heart pressure values, and to measure cardiac capillary permeability using a Texas Red/sodium fluorescein multiple indicator dilution method. Control animals had significantly lower average permeability-surface-area-products (0.035 ± 0.013 cm3/s) than doxorubicin animals (0.066 ± 0.023 cm3/s), PSP ± SD, p < 0.001. These permeability changes correlated with significant functional changes. There was a significant decline in cardiac function with a deleterious effect of chemotherapy on fractional shortening (p < 0.001), left ventricular developed pressure (p < 0.001), contractility (p < 0.001), and relaxation (p = 0.02). Based on our results, cardiac capillary permeability changes can be detected after in vivo chemotherapy treatment using our fluorescent multiple indicator dilution technique, and may provide valuable information in evaluating cardiotoxicity of novel drugs.


Cardiotoxicity Doxorubicin Endothelial damage Fluorescence 



Aortic pressure (mmHg)


Fractional shortening (%)


Interventricular septum thickness in diastole (mm)


Interventricular septum thickness in systole (mm)


Left ventricular diameter in diastole (mm)


Left ventricular developed pressure (mmHg)


Left ventricular diameter in systole (mm)


Left ventricular end diastolic pressure (mmHg)


Left ventricular pressure (mmHg)


Left ventricular posterior wall thickness in diastole (mm)


Left ventricular posterior wall thickness in systole (mm)


Sodium fluorescein


Permeability-surface-area-product (cm3 s−1)


Texas Red-conjugated Dextran


Time to peak (s)



Laboratory work was conducted using the facilities of the Biomedical Engineering Department at Florida International University. A. F. F. was supported by NIH/NIGMS R25 GM061347 during completion of a portion of this work. The same Grant also provided partial experimental funding through the 2008 Biomedical Research Initiative Summer Research Award. D. A. C. was supported by the FIU BME Norman R. Weldon Undergraduate Summer Research Internship during completion of a portion of this work.


  1. 1.
    American Cancer Society. Cancer Facts & Figures 2014. Atlanta: American Cancer Society, 2014.Google Scholar
  2. 2.
    Ferrans, V. J. Overview of cardiac pathology in relation to anthracycline cardiotoxicity. Cancer Treat. Rep. 62(6):955–961, 1978.PubMedGoogle Scholar
  3. 3.
    Platel, D., S. Bonoron-Adele, and J. Robert. Role of daunorubicinol in daunorubicin-induced cardiotoxicity as evaluated with the model of isolated perfused rat heart. Pharmacol. Toxicol. 88(5):250–254, 2001.PubMedCrossRefGoogle Scholar
  4. 4.
    Chen, B., X. Peng, L. Pentassuglia, C. C. Lim, and D. B. Sawyer. Molecular and cellular mechanisms of anthracycline cardiotoxicity. Cardiovasc. Toxicol. 7(2):114–121, 2007.PubMedCrossRefGoogle Scholar
  5. 5.
    Chen, X., Y. Chen, Y. Bi, et al. Preventive cardioprotection of erythropoietin against doxorubicin-induced cardiomyopathy. Cardiovasc. Drugs Ther. 21(5):367–374, 2007.PubMedCrossRefGoogle Scholar
  6. 6.
    Minotti, G., P. Menna, E. Salvatorelli, G. Cairo, and L. Gianni. Anthracyclines: molecular advances and pharmacologic developments in antitumor activity and cardiotoxicity. Pharmacol. Rev. 56(2):185–229, 2004.PubMedCrossRefGoogle Scholar
  7. 7.
    Platel, D., P. Pouna, S. Bonoron-Adele, and J. Robert. Preclinical evaluation of the cardiotoxicity of taxane-anthracycline combinations using the model of isolated perfused rat heart. Toxicol. Appl. Pharmacol. 163(2):135–140, 2000.PubMedCrossRefGoogle Scholar
  8. 8.
    Menna, P., S. Recalcati, G. Cairo, and G. Minotti. An introduction to the metabolic determinants of anthracycline cardiotoxicity. Cardiovasc. Toxicol. 7(2):80–85, 2007.PubMedCrossRefGoogle Scholar
  9. 9.
    Wolf, M. B., and J. W. Baynes. The anti-cancer drug, doxorubicin, causes oxidant stress-induced endothelial dysfunction. Biochim. Biophys. Acta. 1760(2):267–271, 2006.PubMedCrossRefGoogle Scholar
  10. 10.
    Takemura, G., and H. Fujiwara. Doxorubicin-induced cardiomyopathy from the cardiotoxic mechanisms to management. Prog. Cardiovasc. Dis. 49(5):330–352, 2007.PubMedCrossRefGoogle Scholar
  11. 11.
    Fernandez-Fernandez, A., A. J. McGoron, and D. A. Carvajal. Application of a fluorescent multiple indicator dilution method to study changes in cardiac capillary permeability with chemotherapy. Paper presented at: IFMBE Proceedings 25th Southern Biomedical Engineering Conference 2009; Miami, FL.Google Scholar
  12. 12.
    Fernandez-Fernandez, A., D. A. Carvajal, and A. J. McGoron. Measuring in vivo effects of chemotherapy treatment on cardiac capillary permeability. Paper presented at: IFMBE Proceedings 26th Southern Biomedical Engineering Conference 2010; College Park, MD.Google Scholar
  13. 13.
    Bassingthwaighte, J. B., and H. V. Sparks. Indicator dilution estimation of capillary endothelial transport. Annu. Rev. Physiol. 48:321–334, 1986.PubMedCentralPubMedCrossRefGoogle Scholar
  14. 14.
    Bassingthwaighte, J. B., T. Strandell, and D. E. Donald. Estimation of coronary blood flow by washout of diffusible indicators. Circ. Res. 23(2):259–278, 1968.PubMedCentralPubMedCrossRefGoogle Scholar
  15. 15.
    Zierler, K. Indicator dilution methods for measuring blood flow, volume, and other properties of biological systems: a brief history and memoir. Ann. Biomed. Eng. 28(8):836–848, 2000.PubMedCrossRefGoogle Scholar
  16. 16.
    Meerdink, D. J., and J. A. Leppo. Myocardial transport of hexakis(2-methoxyisobutylisonitrile) and thallium before and after coronary reperfusion. Circ. Res. 66(6):1738–1746, 1990.PubMedCrossRefGoogle Scholar
  17. 17.
    McGoron, A. J., M. C. Gerson, D. S. Biniakiewicz, N. J. Roszell, L. C. Washburn, and R. W. Millard. Extraction and retention of technetium-99m Q12, technetium-99m sestamibi, and thallium-201 in isolated rat heart during coronary acidemia. Eur. J. Nucl. Med. 24(12):1479–1486, 1997.PubMedCrossRefGoogle Scholar
  18. 18.
    Assaly, R. A., R. H. Habib, M. Azizi, J. I. Shapiro, and J. D. Dignam. Use of multiple fluorophores for evaluating microvascular permeability in control rats and rats with sepsis. Clin. Sci. (Lond) 114(2):123–130, 2008.CrossRefGoogle Scholar
  19. 19.
    Sanders, J. R., N. A. Pou, and R. J. Roselli. Neutral and DEAE dextrans as tracers for assessing lung microvascular barrier permeability and integrity. J. Appl. Physiol. 93(1):251–262, 2002.PubMedGoogle Scholar
  20. 20.
    Meier, P., and K. L. Zierler. On the theory of the indicator-dilution method for measurement of blood flow and volume. J. Appl. Physiol. 6(12):731–744, 1954.PubMedGoogle Scholar
  21. 21.
    Crone, C. The permeability of capillaries in various organs as determined by use of the ‘indicator diffusion’ method. Acta Physiol. Scand. 58:292–305, 1963.PubMedCrossRefGoogle Scholar
  22. 22.
    Pouna, P., S. Bonoron-Adele, G. Gouverneur, L. Tariosse, P. Besse, and J. Robert. Development of the model of rat isolated perfused heart for the evaluation of anthracycline cardiotoxicity and its circumvention. Br. J. Pharmacol. 117(7):1593–1599, 1996.PubMedCentralPubMedCrossRefGoogle Scholar
  23. 23.
    Robert, J. Long-term and short-term models for studying anthracycline cardiotoxicity and protectors. Cardiovasc. Toxicol. 7(2):135–139, 2007.PubMedCrossRefGoogle Scholar
  24. 24.
    Plande, J., D. Platel, L. Tariosse, and J. Robert. Experimental study of dexrazoxane-anthracycline combinations using the model of isolated perfused rat heart. Toxicol. Lett. 161(1):37–42, 2006.PubMedCrossRefGoogle Scholar
  25. 25.
    de Nigris, F., M. Rienzo, C. Schiano, C. Fiorito, A. Casamassimi, and C. Napoli. Prominent cardioprotective effects of third generation beta blocker nebivolol against anthracycline-induced cardiotoxicity using the model of isolated perfused rat heart. Eur. J. Cancer. 44(3):334–340, 2008.PubMedCrossRefGoogle Scholar
  26. 26.
    Skrzypiec-Spring, M., B. Grotthus, A. Szelag, and R. Schulz. Isolated heart perfusion according to Langendorff—still viable in the new millennium. J. Pharmacol. Toxicol. Methods 55(2):113–126, 2007.PubMedCrossRefGoogle Scholar
  27. 27.
    Carvajal, D. A., A. Fernandez-Fernandez, and A. J. McGoron. Development of Matlab algorithm to process pressure waveforms from isolated perfused heart experiments. Paper presented at: IFMBE Proceedings 25th Southern Biomedical Engineering Conference 2009; Miami, FL.Google Scholar
  28. 28.
    Morton, D. B. A systematic approach for establishing humane endpoints. ILAR J. 41(2):80–86, 2000.PubMedCrossRefGoogle Scholar
  29. 29.
    Boston University. Tumor Policy for Mice and Rats. Section IX: Humane Endpoint Criteria. Available at:, 2009.
  30. 30.
    University of Pennsylvania. IACUC Guideline: Humane Intervention and Endpoints for Laboratory Animal Species. Available at, 2011.
  31. 31.
    Reagan-Shaw, S., M. Nihal, and N. Ahmad. Dose translation from animal to human studies revisited. FASEB J. 22(3):659–661, 2008.PubMedCrossRefGoogle Scholar
  32. 32.
    Wonders, K. Y., and B. S. Reigle. Trastuzumab and doxorubicin-related cardiotoxicity and the cardioprotective role of exercise. Integr. Cancer Ther. 8(1):17–21, 2009.PubMedCrossRefGoogle Scholar
  33. 33.
    Hayward, R., and D. S. Hydock. Doxorubicin cardiotoxicity in the rat: an in vivo characterization. J. Am. Assoc. Lab. Anim. Sci. 46(4):20–32, 2007.PubMedGoogle Scholar
  34. 34.
    Lin, C. W., Y. Wang, P. Challa, D. L. Epstein, and F. Yuan. Transscleral diffusion of ethacrynic acid and sodium fluorescein. Mol. Vis. 13:243–251, 2007.PubMedCentralPubMedCrossRefGoogle Scholar
  35. 35.
    Svendsen, J., P. Bjerrum, and S. Haunso. Myocardial capillary permeability after regional ischemia and reperfusion in the in vivo canine heart. Effect of superoxide dismutase. Circ. Res. 68:174–184, 1991.PubMedCrossRefGoogle Scholar
  36. 36.
    Ward, B. J., and J. L. Donnelly. Hypoxia induced disruption of the cardiac endothelial glycocalyx: implications for capillary permeability. Cardiovasc. Res. 27(3):384–389, 1993.PubMedCrossRefGoogle Scholar
  37. 37.
    Al-Haboubi, H. A., and B. J. Ward. Microvascular permeability of the isolated rat heart to various solutes in well-oxygenated and hypoxic conditions. Int. J. Microcirc. Clin. Exp. 16(6):291–301, 1996.PubMedCrossRefGoogle Scholar
  38. 38.
    Bassingthwaighte, J., C. A. Goresky, and J. H. Linehan. Modeling in the analysis of the processes of uptake and metabolism in the whole organ. In: Whole Organ Approaches to Cellular Metabolism, edited by Bassingthwaighte et al. Springer, 1998, pp. 3–27.Google Scholar
  39. 39.
    Audi, S. H., J. H. Linehan, G. S. Krenz, and C. A. Dawso. Accounting for the heterogeneity of capillary transit times in modeling multiple indicator dilution data. Ann. Biomed. Eng. 26:914–930, 1998.PubMedCrossRefGoogle Scholar
  40. 40.
    Bassingthwaighte, J. B., and M. Levin. Analysis of coronary outflow dilution curves for the estimation of cellular uptake rates in the presence of heterogeneous regional flows. Basic Res. Cardiol. 76(4):404–410, 1981.PubMedCentralPubMedCrossRefGoogle Scholar
  41. 41.
    Schwarz, E. R., C. Pollick, J. Dow, M. Patterson, Y. Birnbaum, and R. A. Kloner. A small animal model of non-ischemic cardiomyopathy and its evaluation by transthoracic echocardiography. Cardiovasc. Res. 39(1):216–223, 1998.PubMedCrossRefGoogle Scholar
  42. 42.
    Schwarz, E. R., C. Pollick, W. P. Meehan, and R. A. Kloner. Evaluation of cardiac structures and function in small experimental animals: transthoracic, transesophageal, and intraventricular echocardiography to assess contractile function in rat heart. Basic Res. Cardiol. 93(6):477–486, 1998.PubMedCrossRefGoogle Scholar
  43. 43.
    Watson, L. E., M. Sheth, R. F. Denyer, and D. E. Dostal. Baseline echocardiographic values for adult male rats. J. Am. Soc. Echocardiogr. 17(2):161–167, 2004.PubMedCrossRefGoogle Scholar
  44. 44.
    Teraoka, K., M. Hirano, K. Yamaguchi, and A. Yamashina. Progressive cardiac dysfunction in adriamycin-induced cardiomyopathy rats. Eur. J. Heart Fail. 2(4):373–378, 2000.PubMedCrossRefGoogle Scholar

Copyright information

© Biomedical Engineering Society 2014

Authors and Affiliations

  • Alicia Fernandez-Fernandez
    • 1
    • 2
  • Denny A. Carvajal
    • 1
    • 3
  • Tingjun Lei
    • 1
    • 4
  • Anthony J. McGoron
    • 1
    Email author
  1. 1.Biomedical Engineering DepartmentFlorida International UniversityMiamiUSA
  2. 2.Physical Therapy DepartmentNova Southeastern UniversityFort LauderdaleUSA
  3. 3.Mount Sinai Medical CenterMiami BeachUSA
  4. 4.CirleMiamiUSA

Personalised recommendations