Advertisement

Annals of Biomedical Engineering

, Volume 42, Issue 12, pp 2425–2439 | Cite as

Modelling of Atherosclerotic Plaque for Use in a Computational Test-Bed for Stent Angioplasty

  • C. Conway
  • J. P. McGarry
  • P. E. McHugh
Article

Abstract

A thorough understanding of the diseased tissue state is necessary for the successful treatment of a blocked arterial vessel using stent angioplasty. The constitutive representation of atherosclerotic tissue is of great interest to researchers and engineers using computational models to analyse stents, as it is this in silico environment that allows extensive exploration of tissue response to device implantation. This paper presents an in silico evaluation of the effects of variation of atherosclerotic tissue constitutive representation on tissue mechanical response during stent implantation. The motivation behind this work is to investigate the level of detail that is required when modelling atherosclerotic tissue in a stenting simulation, and to give recommendations to the FDA for their guideline document on coronary stent evaluation, and specifically the current requirements for computational stress analyses. This paper explores the effects of variation of the material model for the atherosclerotic tissue matrix, the effects of inclusion of calcifications and a lipid pool, and finally the effects of inclusion of the Mullins effect in the atherosclerotic tissue matrix, on tissue response in stenting simulations. Results indicate that the inclusion of the Mullins effect in a direct stenting simulation does not have a significant effect on the deformed shape of the tissue or the stress state of the tissue. The inclusion of a lipid pool induces a local redistribution of lesion deformation for a soft surrounding matrix and the inclusion of a small volume of calcifications dramatically alters the local results for a soft surrounding matrix. One of the key findings from this work is that the underlying constitutive model (elasticity model) used for the atherosclerotic tissue is the dominant feature of the tissue representation in predicting tissue response in a stenting simulation.

Keywords

Finite element analysis Coronary artery Atherosclerosis Stent Soft tissue modelling 

Notes

Acknowledgements

The authors would like to acknowledge funding from the Irish Research Council/Irish Research Council for Science, Engineering and Technology under the Embark Initiative (C. Conway) and the SFI/HEA Irish Centre for High End Computing for the provision of computational facilities and support.

References

  1. 1.
    Akyildiz, A. C., L. Speelman, and F. J. H. Gijsen. Mechanical properties of human atherosclerotic intima tissue. J. Biomech. 3(47):773–783, 2014.CrossRefGoogle Scholar
  2. 2.
    Anon. Abaqus 6.10 Theory Manual, DS SIMULIA Corp., Providence, RI, USA 2010.Google Scholar
  3. 3.
    Barrett, S. R. H., M. P. F. Sutcliffe, S. Howarth, Z. Li, and J. H. Gillard. Experimental measurement of the mechanical properties of carotid atherothrombotic plaque fibrous cap. J. Biomech. 42:1650–1655, 2009.PubMedCrossRefGoogle Scholar
  4. 4.
    Bedoya, J., C. A. Meyer, L. H. Timmins, M. R. Moreno, and J. E. Moore, Jr. Effects of stent design parameters on normal artery wall mechanics. J. Biomech. Eng. 128:757–765, 2006.PubMedCrossRefGoogle Scholar
  5. 5.
    Brinkhues, S., D. Balzani, and G. A. Holzapfel. Simulation of damage hysteresis in soft biological tissues. PAMM 9:155–156, 2009.CrossRefGoogle Scholar
  6. 6.
    Capelli, C., F. Gervaso, L. Petrini, G. Dubini, and F. Migliavacca. Assessment of tissue prolapse after balloon-expandable stenting: influence of stent cell geometry. Med. Eng. Phys. 31:441–447, 2009.PubMedCrossRefGoogle Scholar
  7. 7.
    Cardoso, L., and S. Weinbaum. Changing views of the biomechanics of vulnerable plaque rupture: a review. Ann. Biomed. Eng. 42:415–431, 2014.PubMedCrossRefGoogle Scholar
  8. 8.
    Chai, C.-K., A. C. Akyildiz, L. Speelman, F. J. H. Gijsen, C. W. J. Oomens, M. R. H. M. van Sambeek, et al. Local axial compressive mechanical properties of human carotid atherosclerotic plaques-characterisation by indentation test and inverse finite element analysis. J. Biomech. 21(46):1759–1766, 2013.CrossRefGoogle Scholar
  9. 9.
    Chai, C.-K., L. Speelman, C. W. J. Oomens, and F. P. T. Baaijens. Compressive mechanical properties of atherosclerotic plaques–indentation test to characterise the local anisotropic behaviour. J. Biomech. 3(47):784–792, 2014.CrossRefGoogle Scholar
  10. 10.
    Cheng, G. C., H. M. Loree, R. D. Kamm, M. C. Fishbein, and R. T. Lee. Distribution of circumferential stress in ruptured and stable atherosclerotic lesions. A structural analysis with histopathological correlation. Circulation 87:1179–1187, 1993.PubMedCrossRefGoogle Scholar
  11. 11.
    Chua, S. N. D., B. J. Mac Donald, and M. S. J. Hashmi. Finite-element simulation of stent expansion. J. Mater. Process. Technol. 15(120):335–340, 2002.CrossRefGoogle Scholar
  12. 12.
    Conway, C., F. Sharif, J. McGarry, and P. McHugh. A computational test-bed to assess coronary stent implantation mechanics using a population-specific approach. Cardiovasc. Eng. Technol. 3:1–14, 2012.CrossRefGoogle Scholar
  13. 13.
    Ebenstein, D. M., D. Coughlin, J. Chapman, C. Li, and L. A. Pruitt. Nanomechanical properties of calcification, fibrous tissue, and hematoma from atherosclerotic plaques. J. Biomed. Mater. Res. Part A 15(91A):1028–1037, 2009.CrossRefGoogle Scholar
  14. 14.
    FDA. Non-Clinical Engineering Tests and Recommended Labeling for Intravascular Stents and Associated Delivery Systems [Internet] [cited 2012 June 25]: Available from: http://www.fda.gov/medicaldevices/deviceregulationandguidance/guidancedocuments/ucm071863.htm.
  15. 15.
    García, A., E. Peña, and M. A. Martínez. Influence of geometrical parameters on radial force during self-expanding stent deployment. Application for a variable radial stiffness stent. J. Mech. Behav. Biomed. Mater. 10:166–175, 2012.PubMedCrossRefGoogle Scholar
  16. 16.
    Gasser, T. C., R. W. Ogden, and G. A. Holzapfel. Hyperelastic modelling of arterial layers with distributed collagen fibre orientations. J. R. Soc. Interface 3:15–35, 2006.PubMedCentralPubMedCrossRefGoogle Scholar
  17. 17.
    Gastaldi, D., S. Morlacchi, R. Nichetti, C. Capelli, G. Dubini, L. Petrini, et al. Modelling of the provisional side-branch stenting approach for the treatment of atherosclerotic coronary bifurcations: effects of stent positioning. Biomech. Model. Mechanobiol. 9:551–561, 2010.PubMedCrossRefGoogle Scholar
  18. 18.
    Gijsen, F. J. H., and F. Migliavacca. Plaque mechanics. J. Biomech. 3(47):763–764, 2014.CrossRefGoogle Scholar
  19. 19.
    Grogan, J. A., B. J. O’Brien, S. B. Leen, and P. E. McHugh. A corrosion model for bioabsorbable metallic stents. Acta Biomater. 7:3523–3533, 2011.PubMedCrossRefGoogle Scholar
  20. 20.
    Grogan, J. A., S. B. Leen, and P. E. McHugh. Optimizing the design of a bioabsorbable metal stent using computer simulation methods. Biomaterials 34:8049–8060, 2013.PubMedCrossRefGoogle Scholar
  21. 21.
    Harewood, F., J. Grogan, and P. McHugh. A multiscale approach to failure assessment in deployment for cardiovascular stents. J. Multiscal. Model. 2:1–22, 2010.CrossRefGoogle Scholar
  22. 22.
    Holzapfel, G. A., G. Sommer, and P. Regitnig. Anisotropic mechanical properties of tissue components in human atherosclerotic plaques. J. Biomech. Eng. 126:657–665, 2004.PubMedCrossRefGoogle Scholar
  23. 23.
    Holzapfel, G. A., M. Stadler, and T. C. Gasser. Changes in the mechanical environment of stenotic arteries during interaction with stents: computational assessment of parametric stent designs. J. Biomech. Eng. 127:166–180, 2005.PubMedCrossRefGoogle Scholar
  24. 24.
    Holzapfel, G. A., J. J. Mulvihill, E. M. Cunnane, and M. T. Walsh. Computational approaches for analyzing the mechanics of atherosclerotic plaques: a review. J. Biomech. 47:859–869, 2014.PubMedCrossRefGoogle Scholar
  25. 25.
    Iannaccone, F., N. Debusschere, S. De Bock, M. De Beule, D. Van Loo, F. Vermassen, et al. The influence of vascular anatomy on carotid artery stenting: a parametric study for damage assessment. J. Biomech. 3(47):890–898, 2014.CrossRefGoogle Scholar
  26. 26.
    Kelly, N., and J. P. McGarry. Experimental and numerical characterisation of the elasto-plastic properties of bovine trabecular bone and a trabecular bone analogue. J. Mech. Behav. Biomed. Mater. 9:184–197, 2012.PubMedCrossRefGoogle Scholar
  27. 27.
    Kelly, N., N. M. Harrison, P. McDonnell, and J. P. McGarry. An experimental and computational investigation of the post-yield behaviour of trabecular bone during vertebral device subsidence. Biomech. Model. Mechanobiol. 12:685–703, 2013.PubMedCrossRefGoogle Scholar
  28. 28.
    Kelly-Arnold, A., N. Maldonado, D. Laudier, E. Aikawa, L. Cardoso, and S. Weinbaum. Revised microcalcification hypothesis for fibrous cap rupture in human coronary arteries. Proc. Natl. Acad. Sci. USA 25(110):10741–10746, 2013.CrossRefGoogle Scholar
  29. 29.
    Kolandaivelu, K., B. B. Leiden, and E. R. Edelman. Predicting response to endovascular therapies: dissecting the roles of local lesion complexity, systemic comorbidity, and clinical uncertainty. J. Biomech. 3(47):908–921, 2014.CrossRefGoogle Scholar
  30. 30.
    Laroche, D., S. Delorme, T. Anderson, and R. DiRaddo. Computer prediction of friction in balloon angioplasty and stent implantation. Biomed. Simul. 4072:1–8, 2006.CrossRefGoogle Scholar
  31. 31.
    Lawlor, M. G., M. R. O’Donnell, B. M. O’Connell, and M. T. Walsh. Experimental determination of circumferential properties of fresh carotid artery plaques. J. Biomech. 3(44):1709–1715, 2011.CrossRefGoogle Scholar
  32. 32.
    Lee, R., A. Grodzinsky, E. Frank, R. Kamm, and F. Schoen. Structure-dependent dynamic mechanical behavior of fibrous caps from human atherosclerotic plaques. Circulation 83:1764–1770, 1991.PubMedCrossRefGoogle Scholar
  33. 33.
    Li, Z.-Y., S. Howarth, R. A. Trivedi, J. M. U-King-Im, M. J. Graves, A. Brown, et al. Stress analysis of carotid plaque rupture based on in vivo high resolution MRI. J. Biomech. 39:2611–2622, 2006.PubMedCrossRefGoogle Scholar
  34. 34.
    Loree, H. M., A. J. Grodzinsky, S. Y. Park, L. J. Gibson, and R. T. Lee. Static circumferential tangential modulus of human atherosclerotic tissue. J. Biomech. 27:195–204, 1994.PubMedCrossRefGoogle Scholar
  35. 35.
    Loree, H. M., B. J. Tobias, L. J. Gibson, R. D. Kamm, D. M. Small, and R. T. Lee. Mechanical properties of model atherosclerotic lesion lipid pools. Arterioscler. Thromb. Vasc. Biol. 1(14):230–234, 1994.CrossRefGoogle Scholar
  36. 36.
    Maher, E., A. Creane, S. Sultan, N. Hynes, C. Lally, and D. J. Kelly. Tensile and compressive properties of fresh human carotid atherosclerotic plaques. J. Biomech. 11(42):2760–2767, 2009.CrossRefGoogle Scholar
  37. 37.
    Maher, E., A. Creane, S. Sultan, N. Hynes, C. Lally, and D. J. Kelly. Inelasticity of human carotid atherosclerotic plaque. Ann. Biomed. Eng. 27(39):2445–2455, 2011.CrossRefGoogle Scholar
  38. 38.
    Maher, E., A. Creane, S. Sultan, N. Hynes, C. Lally, and D. J. Kelly. Inelasticity of human carotid atherosclerotic plaque. Ann. Biomed. Eng. 39:2445–2455, 2011.PubMedCrossRefGoogle Scholar
  39. 39.
    Maldonado, N., A. Kelly-Arnold, Y. Vengrenyuk, D. Laudier, J. T. Fallon, R. Virmani, et al. A mechanistic analysis of the role of microcalcifications in atherosclerotic plaque stability: potential implications for plaque rupture. Am. J. Physiol. Heart Circ. Physiol. 1(303):H619–H628, 2012.CrossRefGoogle Scholar
  40. 40.
    McGarry, J. P., B. P. O’Donnell, P. E. McHugh, E. O’Cearbhaill, and R. M. McMeeking. Computational examination of the effect of material inhomogeneity on the necking of stent struts under tensile loading. J. Appl. Mech. 74:978–989, 2007.CrossRefGoogle Scholar
  41. 41.
    Morlacchi, S., and F. Migliavacca. Modeling stented coronary arteries: where we are, where to go. Ann. Biomed. Eng. 41:1428–1444, 2013.PubMedCrossRefGoogle Scholar
  42. 42.
    Morlacchi, S., S. G. Colleoni, R. Cárdenes, C. Chiastra, J. L. Diez, I. Larrabide, et al. Patient-specific simulations of stenting procedures in coronary bifurcations: two clinical cases. Med. Eng. Phys. 35:1272–1281, 2013.PubMedCrossRefGoogle Scholar
  43. 43.
    Morlacchi, S., G. Pennati, L. Petrini, G. Dubini, and F. Migliavacca. Influence of plaque calcifications on coronary stent fracture: a numerical fatigue life analysis including cardiac wall movement. J. Biomech. 3(47):899–907, 2014.CrossRefGoogle Scholar
  44. 44.
    Mortier, P., M. D. Beule, S. G. Carlier, R. V. Impe, B. Verhegghe, and P. Verdonck. Numerical study of the uniformity of balloon-expandable stent deployment. J. Biomech. Eng. 130:021018, 2008.PubMedCrossRefGoogle Scholar
  45. 45.
    Mortier, P., G. A. Holzapfel, M. De Beule, D. Van Loo, Y. Taeymans, P. Segers, et al. A novel simulation strategy for stent insertion and deployment in curved coronary bifurcations: comparison of three drug-eluting stents. Ann. Biomed. Eng. 38:88–99, 2010.PubMedCrossRefGoogle Scholar
  46. 46.
    Mulvihill, J. J., and M. T. Walsh. On the mechanical behaviour of carotid artery plaques: the influence of curve-fitting experimental data on numerical model results. Biomech. Model. Mechanobiol. 12:975–985, 2013.PubMedCrossRefGoogle Scholar
  47. 47.
    Mulvihill, J. J., E. M. Cunnane, S. M. McHugh, E. G. Kavanagh, S. R. Walsh, and M. T. Walsh. Mechanical, biological and structural characterization of in vitro ruptured human carotid plaque tissue. Acta Biomater. 9:9027–9035, 2013.PubMedCrossRefGoogle Scholar
  48. 48.
    Ogden, R. W., and D. G. Roxburgh. A pseudo-elastic model for the Mullins effect in filled rubber. Proc. R Soc. Lond. A 455:2861–2877, 1999.CrossRefGoogle Scholar
  49. 49.
    Pericevic, I., C. Lally, D. Toner, and D. J. Kelly. The influence of plaque composition on underlying arterial wall stress during stent expansion: the case for lesion-specific stents. Med. Eng. Phys. 31:428–433, 2009.PubMedCrossRefGoogle Scholar
  50. 50.
    Rambhia, S. H., X. Liang, M. Xenos, Y. Alemu, N. Maldonado, A. Kelly, et al. Microcalcifications increase coronary vulnerable plaque rupture potential: a patient-based micro-CT fluid-structure interaction study. Ann. Biomed. Eng. 40:1443–1454, 2012.PubMedCrossRefGoogle Scholar
  51. 51.
    Salunke, N. V., L. D. T. Topoleski, J. D. Humphrey, and W. J. Mergner. Compressive stress-relaxation of human atherosclerotic plaque. J. Biomed. Mater. Res. 55:236–241, 2001.PubMedCrossRefGoogle Scholar
  52. 52.
    Stary, H. Atlas of Atherosclerosis Progression and Regression. New York: Parthenon Publishing, 1999.Google Scholar
  53. 53.
    Stary, H. C. Natural history of calcium deposits in atherosclerosis progression and regression. Z Kardiol 1(89):S028–S035, 2000.Google Scholar
  54. 54.
    Teng, Z., D. Tang, J. Zheng, P. K. Woodard, and A. H. Hoffman. An experimental study on the ultimate strength of the adventitia and media of human atherosclerotic carotid arteries in circumferential and axial directions. J. Biomech. 13(42):2535–2539, 2009.CrossRefGoogle Scholar
  55. 55.
    Timmins, L. H., C. A. Meyer, M. R. Moreno, and J. E. Moore, Jr. Effects of stent design and atherosclerotic plaque composition on arterial wall biomechanics. J. Endovasc. Ther. 15:643–654, 2008.PubMedCentralPubMedCrossRefGoogle Scholar
  56. 56.
    Topoleski, L. D. T., N. V. Salunke, J. D. Humphrey, and W. J. Mergner. Composition- and history-dependent radial compressive behavior of human atherosclerotic plaque. J. Biomed. Mater. Res. 35:117–127, 1997.PubMedCrossRefGoogle Scholar
  57. 57.
    Vavuranakis, M., K. Toutouzas, C. Stefanadis, C. Chrisohou, D. Markou, and P. Toutouzas. Stent deployment in calcified lesions: can we overcome calcific restraint with high-pressure balloon inflations? Catheter. Cardiovasc. Interv. 52:164–172, 2001.PubMedCrossRefGoogle Scholar
  58. 58.
    Vengrenyuk, Y., S. Carlier, S. Xanthos, L. Cardoso, P. Ganatos, R. Virmani, et al. A hypothesis for vulnerable plaque rupture due to stress-induced debonding around cellular microcalcifications in thin fibrous caps. Proc. Natl. Acad. Sci. USA 3(103):14678–14683, 2006.CrossRefGoogle Scholar
  59. 59.
    Walraevens, J., B. Willaert, G. De Win, A. Ranftl, J. De Schutter, and J. V. Sloten. Correlation between compression, tensile and tearing tests on healthy and calcified aortic tissues. Med. Eng. Phys. 30:1098–1104, 2008.PubMedCrossRefGoogle Scholar
  60. 60.
    Walsh, M. T., E. M. Cunnane, J. J. Mulvihill, A. C. Akyildiz, F. J. H. Gijsen, and G. A. Holzapfel. Uniaxial tensile testing approaches for characterisation of atherosclerotic plaques. J. Biomech. 3(47):793–804, 2014.CrossRefGoogle Scholar
  61. 61.
    Wenk, J. F. Numerical modeling of stress in stenotic arteries with microcalcifications: a parameter sensitivity study. J. Biomech. Eng. 133:014503, 2010.CrossRefGoogle Scholar
  62. 62.
    Zahedmanesh, H., D. John Kelly, and C. Lally. Simulation of a balloon expandable stent in a realistic coronary artery—determination of the optimum modelling strategy. J. Biomech. 43:2126–2132, 2010.PubMedCrossRefGoogle Scholar

Copyright information

© Biomedical Engineering Society 2014

Authors and Affiliations

  1. 1.Biomechanics Research Centre (BMEC), Biomedical Engineering, College of Engineering and InformaticsNational University of Ireland GalwayGalwayIreland

Personalised recommendations