Skip to main content

Biologic Scaffolds for Regenerative Medicine: Mechanisms of In vivo Remodeling

Abstract

Successful regenerative medicine strategies for functional tissue reconstruction include the in situ placement of acellular materials composed of the extracellular matrix (ECM) or individual components of the ECM. The composition and ultrastructure of these materials vary depending on multiple factors including the tissue source and species from which the materials are harvested, the methods of manufacture, the efficiency of decellularization, post-processing modifications such as chemical cross-linking or solubilization, and the methods of terminal sterilization. Appropriately configured materials have the ability to modulate different stages of the healing response by inducing a shift from a process of inflammation and scar tissue formation to one of constructive remodeling and functional tissue restoration. The events that facilitate such a dramatic change during the biomaterial-host interaction are complex and necessarily involve both the immune system and mechanisms of stem cell recruitment, growth, and differentiation. The present manuscript reviews the composition of biologic scaffolds, the methods and recommendations for manufacture, the mechanisms of the biomaterial–host interaction, and the clinical application of this regenerative medicine approach.

This is a preview of subscription content, access via your institution.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

References

  1. 1.

    Agrawal, V., J. Kelly, S. Tottey, K. A. Daly, S. A. Johnson, B. F. Siu, J. Reing, and S. F. Badylak. An isolated cryptic peptide influences osteogenesis and bone remodeling in an adult mammalian model of digit amputation. Tissue Eng. Part A 17(23–24):3033–3044, 2011.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  2. 2.

    Aller, M. A., J. I. Arias, L. A. Arraez-Aybar, C. Gilsanz, and J. Arias. Wound healing reaction: a switch from gestation to senescence. World J. Exp. Med. 4(2):16–26, 2014.

    PubMed Central  PubMed  Google Scholar 

  3. 3.

    Ambrosio, F., S. L. Wolf, A. Delitto, G. K. Fitzgerald, S. F. Badylak, M. L. Boninger, and A. J. Russell. The emerging relationship between regenerative medicine and physical therapeutics. Phys. Ther. 90(12):1807–1814, 2010.

    Article  PubMed Central  PubMed  Google Scholar 

  4. 4.

    Badylak, S. F. The extracellular matrix as a scaffold for tissue reconstruction. Semin. Cell Dev. Biol. 13(5):377–383, 2002.

    Article  CAS  PubMed  Google Scholar 

  5. 5.

    Badylak, S. F. Decellularized allogeneic and xenogeneic tissue as a bioscaffold for regenerative medicine: factors that influence the host response. Ann. Biomed. Eng. 42(7):1517–1527, 2014.

    Article  PubMed  Google Scholar 

  6. 6.

    Badylak, S. F., D. O. Freytes, and T. W. Gilbert. Extracellular matrix as a biological scaffold material: structure and function. Acta Biomater. 5(1):1–13, 2009.

    Article  CAS  PubMed  Google Scholar 

  7. 7.

    Badylak, S. F., T. Hoppo, A. Nieponice, T. W. Gilbert, J. M. Davison, and B. A. Jobe. Esophageal preservation in five male patients after endoscopic inner-layer circumferential resection in the setting of superficial cancer: a regenerative medicine approach with a biologic scaffold. Tissue Eng. Part A 17(11–12):1643–1650, 2011.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. 8.

    Badylak, S. F., D. A. Vorp, A. R. Spievack, A. Simmons-Byrd, J. Hanke, D. O. Freytes, A. Thapa, T. W. Gilbert, and A. Nieponice. Esophageal reconstruction with ECM and muscle tissue in a dog model. J. Surg. Res. 128(1):87–97, 2005.

    Article  PubMed  Google Scholar 

  9. 9.

    Baker, S. M., R. V. Sugars, M. Wendel, A. J. Smith, R. J. Waddington, P. R. Cooper, and A. J. Sloan. TGF-beta/extracellular matrix interactions in dentin matrix: a role in regulating sequestration and protection of bioactivity. Calcif. Tissue Int. 85(1):66–74, 2009.

    Article  CAS  PubMed  Google Scholar 

  10. 10.

    Birch, H. L., C. T. Thorpe, and A. P. Rumian. Specialisation of extracellular matrix for function in tendons and ligaments. Muscles Ligaments Tendons J. 3(1):12–22, 2013.

    PubMed Central  PubMed  Google Scholar 

  11. 11.

    Bissell, M. J., and J. Aggeler. Dynamic reciprocity: how do extracellular matrix and hormones direct gene expression? Prog. Clin. Biol. Res. 249:251–262, 1987.

    CAS  PubMed  Google Scholar 

  12. 12.

    Brennan, E. P., J. Reing, D. Chew, J. M. Myers-Irvin, E. J. Young, and S. F. Badylak. Antibacterial activity within degradation products of biological scaffolds composed of extracellular matrix. Tissue Eng. 12(10):2949–2955, 2006.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. 13.

    Brown, B. N., R. Londono, S. Tottey, L. Zhang, K. A. Kukla, M. T. Wolf, K. A. Daly, J. E. Reing, and S. F. Badylak. Macrophage phenotype as a predictor of constructive remodeling following the implantation of biologically derived surgical mesh materials. Acta Biomater. 8(3):978–987, 2012.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. 14.

    Brown, B. N., B. D. Ratner, S. B. Goodman, S. Amar, and S. F. Badylak. Macrophage polarization: an opportunity for improved outcomes in biomaterials and regenerative medicine. Biomaterials 33(15):3792–3802, 2012.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. 15.

    Brown, B. N., J. E. Valentin, A. M. Stewart-Akers, G. P. McCabe, and S. F. Badylak. Macrophage phenotype and remodeling outcomes in response to biologic scaffolds with and without a cellular component. Biomaterials 30(8):1482–1491, 2009.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. 16.

    Butterfield, J. L. 440 consecutive immediate, implant-based, single-surgeon breast reconstructions in 281 patients: a comparison of early outcomes and costs between surgimend fetal bovine and alloderm human cadaveric acellular dermal matrices. Plast. Reconstr. Surg. 131(5):940–951, 2013.

    Article  CAS  PubMed  Google Scholar 

  17. 17.

    Carey, L. E., C. L. Dearth, S. A. Johnson, R. Londono, C. J. Medberry, K. A. Daly, and S. F. Badylak. In vivo degradation of 14c-labeled porcine dermis biologic scaffold. Biomaterials 35(29):8297–8304, 2014.

  18. 18.

    Chattopadhyay, S., and R. T. Raines. Review collagen-based biomaterials for wound healing. Biopolymers 101(8):821–833, 2014.

    Article  CAS  PubMed  Google Scholar 

  19. 19.

    Chen, M., M. P. Marinkovich, A. Veis, X. Cai, C. N. Rao, E. A. O’Toole, and D. T. Woodley. Interactions of the amino-terminal noncollagenous (NC1) domain of Type VII collagen with extracellular matrix components. A potential role in epidermal-dermal adherence in human skin. J. Biol. Chem. 272(23):14516–14522, 1997.

    Article  CAS  PubMed  Google Scholar 

  20. 20.

    Clark, R. A., N. E. Wikner, D. E. Doherty, and D. A. Norris. Cryptic chemotactic activity of fibronectin for human monocytes resides in the 120-kDa fibroblastic cell-binding fragment. J. Biol. Chem. 263(24):12115–12123, 1988.

    CAS  PubMed  Google Scholar 

  21. 21.

    Crapo, P. M., T. W. Gilbert, and S. F. Badylak. An overview of tissue and whole organ decellularization processes. Biomaterials 32(12):3233–3243, 2011.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. 22.

    Crapo, P. M., C. J. Medberry, J. E. Reing, S. Tottey, Y. van der Merwe, K. E. Jones, and S. F. Badylak. Biologic scaffolds composed of central nervous system extracellular matrix. Biomaterials 33(13):3539–3547, 2012.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. 23.

    Daly, K. A., et al. The host response to endotoxin-contaminated dermal matrix. Tissue Eng. Part A 18(11–12):1293–1303, 2012.

    Article  CAS  PubMed  Google Scholar 

  24. 24.

    Davis, G. E., K. J. Bayless, M. J. Davis, and G. A. Meininger. Regulation of tissue injury responses by the exposure of matricryptic sites within extracellular matrix molecules. Am. J. Pathol. 156(5):1489–1498, 2000.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. 25.

    DiPietro, L. A. Angiogenesis and scar formation in healing wounds. Curr. Opin. Rheumatol. 25(1):87–91, 2013.

    Article  PubMed  Google Scholar 

  26. 26.

    Giannelli, G., J. Falk-Marzillier, O. Schiraldi, W. G. Stetler-Stevenson, and V. Quaranta. Induction of cell migration by matrix metalloprotease-2 cleavage of laminin-5. Science 277(5323):225–228, 1997.

    Article  CAS  PubMed  Google Scholar 

  27. 27.

    Gilbert, T. W., A. M. Stewart-Akers, A. Simmons-Byrd, and S. F. Badylak. Degradation and remodeling of small intestinal submucosa in canine achilles tendon repair. J. Bone Joint Surg. Am. 89(3):621–630, 2007.

    Article  PubMed  Google Scholar 

  28. 28.

    Groulx, J. F., D. Gagne, Y. D. Benoit, D. Martel, N. Basora, and J. F. Beaulieu. Collagen VI is a basement membrane component that regulates epithelial cell–fibronectin interactions. Matrix Biol. 30(3):195–206, 2011.

    Article  CAS  PubMed  Google Scholar 

  29. 29.

    Hodde, J. P., S. F. Badylak, A. O. Brightman, and S. L. Voytik-Harbin. Glycosaminoglycan content of small intestinal submucosa: a bioscaffold for tissue replacement. Tissue Eng. 2(3):209–217, 1996.

    Article  CAS  PubMed  Google Scholar 

  30. 30.

    Hodde, J., R. Record, R. Tullius, and S. Badylak. Fibronectin peptides mediate HMEC adhesion to porcine-derived extracellular matrix. Biomaterials 23(8):1841–1848, 2002.

    Article  CAS  PubMed  Google Scholar 

  31. 31.

    Hynes, R. O. The extracellular matrix: not just pretty fibrils. Science 326(5957):1216–1219, 2009.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. 32.

    Iozzo, R. V., I. R. Cohen, S. Grassel, and A. D. Murdoch. The biology of perlecan: the multifaceted heparan sulphate proteoglycan of basement membranes and pericellular matrices. Biochem. J. 302(Pt 3):625–639, 1994.

    PubMed Central  CAS  PubMed  Google Scholar 

  33. 33.

    Iozzo, R. V., and A. D. Murdoch. Proteoglycans of the extracellular environment: clues from the gene and protein side offer novel perspectives in molecular diversity and function. FASEB J. 10(5):598–614, 1996.

    CAS  PubMed  Google Scholar 

  34. 34.

    Johnson, T. D., and K. L. Christman. Injectable hydrogel therapies and their delivery strategies for treating myocardial infarction. Expert Opin. Drug Deliv. 10(1):59–72, 2013.

    Article  CAS  PubMed  Google Scholar 

  35. 35.

    Johnson, T. D., J. A. Dequach, R. Gaetani, J. Ungerleider, D. Elhag, V. Nigam, A. Behfar, and K. L. Christman. Human versus porcine tissue sourcing for an injectable myocardial matrix hydrogel. Biomater. Sci. 2014:60283D, 2014.

    PubMed Central  PubMed  Google Scholar 

  36. 36.

    Keane, T. J., R. Londono, R. M. Carey, C. A. Carruthers, J. E. Reing, C. L. Dearth, A. D’Amore, C. J. Medberry, and S. F. Badylak. Preparation and characterization of a biologic scaffold from esophageal mucosa. Biomaterials 34(28):6729–6737, 2013.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  37. 37.

    Keane, T. J., R. Londono, N. J. Turner, and S. F. Badylak. Consequences of ineffective decellularization of biologic scaffolds on the host response. Biomaterials 33(6):1771–1781, 2012.

    Article  CAS  PubMed  Google Scholar 

  38. 38.

    Kissane, N. A., and K. M. Itani. A decade of ventral incisional hernia repairs with biologic acellular dermal matrix: what have we learned? Plast. Reconstr. Surg. 130(5 Suppl 2):194S–202S, 2012.

    Article  CAS  PubMed  Google Scholar 

  39. 39.

    Korpos, E., C. Wu, J. Song, R. Hallmann, and L. Sorokin. Role of the extracellular matrix in lymphocyte migration. Cell Tissue Res. 339(1):47–57, 2010.

    Article  CAS  PubMed  Google Scholar 

  40. 40.

    Ladowski, J. M., and J. S. Ladowski. Retrospective analysis of bovine pericardium (vascu-guard) for patch closure in carotid endarterectomies. Ann. Vasc. Surg. 25(5):646–650, 2011.

    Article  PubMed  Google Scholar 

  41. 41.

    Mantovani, A., A. Sica, S. Sozzani, P. Allavena, A. Vecchi, and M. Locati. The chemokine system in diverse forms of macrophage activation and polarization. Trends Immunol. 25(12):677–686, 2004.

    Article  CAS  PubMed  Google Scholar 

  42. 42.

    Maxson, S., E. A. Lopez, D. Yoo, A. Danilkovitch-Miagkova, and M. A. Leroux. Concise review: role of mesenchymal stem cells in wound repair. Stem Cells Transl. Med. 1(2):142–149, 2012.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  43. 43.

    Medberry, C. J., et al. Hydrogels derived from central nervous system extracellular matrix. Biomaterials 34(4):1033–1040, 2013.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  44. 44.

    Mills, S. J., A. J. Cowin, and P. Kaur. Pericytes, mesenchymal stem cells and the wound healing process. Cells 2(3):621–634, 2013.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  45. 45.

    Mills, C. D., K. Kincaid, J. M. Alt, M. J. Heilman, and A. M. Hill. M-1/M-2 macrophages and the Th1/Th2 paradigm. J. Immunol. 164(12):6166–6173, 2000.

    Article  CAS  PubMed  Google Scholar 

  46. 46.

    Mogford, J. E., G. E. Davis, S. H. Platts, and G. A. Meininger. Vascular smooth muscle alpha v beta 3 integrin mediates arteriolar vasodilation in response to RGD peptides. Circ. Res. 79(4):821–826, 1996.

    Article  CAS  PubMed  Google Scholar 

  47. 47.

    Mosser, D. M. The many faces of macrophage activation. J. Leukoc. Biol. 73(2):209–212, 2003.

    Article  CAS  PubMed  Google Scholar 

  48. 48.

    Nauseef, W. M., and N. Borregaard. Neutrophils at work. Nat. Immunol. 15(7):602–611, 2014.

    Article  CAS  PubMed  Google Scholar 

  49. 49.

    Nieponice, A., F. F. Ciotola, F. Nachman, B. A. Jobe, T. Hoppo, R. Londono, S. Badylak, and A. E. Badaloni. Patch esophagoplasty: esophageal reconstruction using biologic scaffolds. Ann. Thorac. Surg. 97(1):283–288, 2014.

    Article  PubMed  Google Scholar 

  50. 50.

    Nieponice, A., T. W. Gilbert, S. A. Johnson, N. J. Turner, and S. F. Badylak. Bone marrow-derived cells participate in the long-term remodeling in a mouse model of esophageal reconstruction. J. Surg. Res. 182(1):e1–e7, 2013.

    Article  CAS  PubMed  Google Scholar 

  51. 51.

    Ponce, M. L., M. Nomizu, M. C. Delgado, Y. Kuratomi, M. P. Hoffman, S. Powell, Y. Yamada, H. K. Kleinman, and K. M. Malinda. Identification of endothelial cell binding sites on the laminin gamma 1 chain. Circ. Res. 84(6):688–694, 1999.

    Article  CAS  PubMed  Google Scholar 

  52. 52.

    Record, R. D., D. Hillegonds, C. Simmons, R. Tullius, F. A. Rickey, D. Elmore, and S. F. Badylak. In vivo degradation of 14C-labeled small intestinal submucosa (SIS) when used for urinary bladder repair. Biomaterials 22(19):2653–2659, 2001.

    Article  CAS  PubMed  Google Scholar 

  53. 53.

    Reing, J. E., et al. Degradation products of extracellular matrix affect cell migration and proliferation. Tissue Eng. Part A 15(3):605–614, 2009.

    Article  CAS  PubMed  Google Scholar 

  54. 54.

    Ricard-Blum, S., and L. Ballut. Matricryptins derived from collagens and proteoglycans. Front Biosci. (Landmark Ed) 16:674–697, 2011.

    Article  CAS  Google Scholar 

  55. 55.

    Rider, P., Y. Carmi, O. Guttman, A. Braiman, I. Cohen, E. Voronov, M. R. White, C. A. Dinarello, and R. N. Apte. IL-1alpha and IL-1beta recruit different myeloid cells and promote different stages of sterile inflammation. J. Immunol. 187(9):4835–4843, 2011.

    Article  CAS  PubMed  Google Scholar 

  56. 56.

    Ruoslahti, E., E. G. Hayman, M. Pierschbacher, and E. Engvall, Fibronectin. Purification, immunochemical properties, and biological activities. Methods Enzymol. 82 Pt A:803–831, 1982.

  57. 57.

    Sarikaya, A., R. Record, C. C. Wu, B. Tullius, S. Badylak, and M. Ladisch. Antimicrobial activity associated with extracellular matrices. Tissue Eng. 8(1):63–71, 2002.

    Article  PubMed  Google Scholar 

  58. 58.

    Sawkins, M. J., et al. Hydrogels derived from demineralized and decellularized bone extracellular matrix. Acta Biomater. 9(8):7865–7873, 2013.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  59. 59.

    Scholl, F. G., M. M. Boucek, K. C. Chan, L. Valdes-Cruz, and R. Perryman. Preliminary experience with cardiac reconstruction using decellularized porcine extracellular matrix scaffold: human applications in congenital heart disease. World J. Pediatr. Congenit. Heart Surg. 1(1):132–136, 2010.

    Article  PubMed  Google Scholar 

  60. 60.

    Schonherr, E., M. Broszat, E. Brandan, P. Bruckner, and H. Kresse. Decorin core protein fragment Leu155-Val260 interacts with TGF-beta but does not compete for decorin binding to Type I collagen. Arch. Biochem. Biophys. 355(2):241–248, 1998.

    Article  CAS  PubMed  Google Scholar 

  61. 61.

    Schonherr, E., H. Hausser, L. Beavan, and H. Kresse. Decorin-Type I collagen interaction. Presence of separate core protein-binding domains. J. Biol. Chem. 270(15):8877–8883, 1995.

    Article  CAS  PubMed  Google Scholar 

  62. 62.

    Schwarzbauer, J. E., and J. L. Sechler. Fibronectin fibrillogenesis: a paradigm for extracellular matrix assembly. Curr. Opin. Cell Biol. 11(5):622–627, 1999.

    Article  CAS  PubMed  Google Scholar 

  63. 63.

    Seiffert, D., and J. W. Smith. The cell adhesion domain in plasma vitronectin is cryptic. J. Biol. Chem. 272(21):13705–13710, 1997.

    Article  CAS  PubMed  Google Scholar 

  64. 64.

    Seif-Naraghi, S. B., et al. Safety and efficacy of an injectable extracellular matrix hydrogel for treating myocardial infarction. Sci. Transl. Med. 5(173):173ra25, 2013.

  65. 65.

    Sicari, B. M., et al. An acellular biologic scaffold promotes skeletal muscle formation in mice and humans with volumetric muscle loss. Sci. Transl. Med. 6(234):234ra58, 2014.

  66. 66.

    Sicari, B. M., et al. The effect of source animal age upon the in vivo remodeling characteristics of an extracellular matrix scaffold. Biomaterials 33(22):5524–5533, 2012.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  67. 67.

    Slack, S. M., J. L. Bohnert, and T. A. Horbett. The effects of surface chemistry and coagulation factors on fibrinogen adsorption from plasma. Ann. N. Y. Acad. Sci. 516:223–243, 1987.

    Article  CAS  PubMed  Google Scholar 

  68. 68.

    Smaniotto, S., D. A. Mendes-da-Cruz, C. E. Carvalho-Pinto, L. M. Araujo, M. Dardenne, and W. Savino. Combined role of extracellular matrix and chemokines on peripheral lymphocyte migration in growth hormone transgenic mice. Brain Behav. Immun. 24(3):451–461, 2010.

    Article  CAS  PubMed  Google Scholar 

  69. 69.

    Soto-Gutierrez, A., et al. A whole-organ regenerative medicine approach for liver replacement. Tissue Eng. Part C 17(6):677–686, 2011.

    Article  CAS  Google Scholar 

  70. 70.

    Tran Cao, H. S., C. Tokin, J. Konop, H. Ojeda-Fournier, J. Chao, and S. L. Blair. A preliminary report on the clinical experience with alloderm in breast reconstruction and its radiologic appearance. Am. Surg. 76(10):1123–1126, 2010.

    PubMed  Google Scholar 

  71. 71.

    Turner, M. D., B. Nedjai, T. Hurst, and D. J. Pennington. Cytokines and chemokines: at the crossroads of cell signalling and inflammatory disease. Biochim. Biophys. Acta 2014.

  72. 72.

    Valentin, J. E., A. M. Stewart-Akers, T. W. Gilbert, and S. F. Badylak. Macrophage participation in the degradation and remodeling of extracellular matrix scaffolds. Tissue Eng. Part A 15(7):1687–1694, 2009.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  73. 73.

    van der Rest, M., and R. Garrone. Collagen family of proteins. FASEB J. 5(13):2814–2823, 1991.

    PubMed  Google Scholar 

  74. 74.

    Vorotnikova, E., et al. Extracellular matrix-derived products modulate endothelial and progenitor cell migration and proliferation in vitro and stimulate regenerative healing in vivo. Matrix Biol. 29(8):690–700, 2010.

    Article  CAS  PubMed  Google Scholar 

  75. 75.

    Wang, J., and H. Arase. Regulation of immune responses by neutrophils. Ann. N. Y. Acad. Sci. 1319(1):66–81, 2014.

    Article  CAS  PubMed  Google Scholar 

  76. 76.

    Whitelock, J. M., A. D. Murdoch, R. V. Iozzo, and P. A. Underwood. The degradation of human endothelial cell-derived perlecan and release of bound basic fibroblast growth factor by stromelysin, collagenase, plasmin, and heparanases. J. Biol. Chem. 271(17):10079–10086, 1996.

    Article  CAS  PubMed  Google Scholar 

  77. 77.

    Wolf, M. T., K. A. Daly, E. P. Brennan-Pierce, S. A. Johnson, C. A. Carruthers, A. D’Amore, S. P. Nagarkar, S. S. Velankar, and S. F. Badylak. A hydrogel derived from decellularized dermal extracellular matrix. Biomaterials 33(29):7028–7038, 2012.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  78. 78.

    Wolf, M. T., K. A. Daly, J. E. Reing, and S. F. Badylak. Biologic scaffold composed of skeletal muscle extracellular matrix. Biomaterials 33(10):2916–2925, 2012.

    Article  CAS  PubMed  Google Scholar 

  79. 79.

    Yamaguchi, Y., D. M. Mann, and E. Ruoslahti. Negative regulation of transforming growth factor-beta by the proteoglycan decorin. Nature 346(6281):281–284, 1990.

    Article  CAS  PubMed  Google Scholar 

  80. 80.

    Zamarron, C., M. H. Ginsberg, and E. F. Plow. Monoclonal antibodies specific for a conformationally altered state of fibrinogen. Thromb. Haemost. 64(1):41–46, 1990.

    CAS  PubMed  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Stephen F. Badylak.

Additional information

Associate Editor Nadya Lumelsky oversaw the review of this article.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Londono, R., Badylak, S.F. Biologic Scaffolds for Regenerative Medicine: Mechanisms of In vivo Remodeling. Ann Biomed Eng 43, 577–592 (2015). https://doi.org/10.1007/s10439-014-1103-8

Download citation

Keywords

  • Extracellular matrix
  • Biomaterial
  • Tissue repair
  • Constructive remodeling
  • Macrophage response