Annals of Biomedical Engineering

, Volume 42, Issue 12, pp 2392–2404 | Cite as

Correlated Parameter Fit of Arrhenius Model for Thermal Denaturation of Proteins and Cells

  • Zhenpeng Qin
  • Saravana Kumar Balasubramanian
  • Willem F. Wolkers
  • John A. Pearce
  • John C. BischofEmail author


Thermal denaturation of proteins is critical to cell injury, food science and other biomaterial processing. For example protein denaturation correlates strongly with cell death by heating, and is increasingly of interest in focal thermal therapies of cancer and other diseases at temperatures which often exceed 50 °C. The Arrhenius model is a simple yet widely used model for both protein denaturation and cell injury. To establish the utility of the Arrhenius model for protein denaturation at 50 °C and above its sensitivities to the kinetic parameters (activation energy E a and frequency factor A) were carefully examined. We propose a simplified correlated parameter fit to the Arrhenius model by treating E a, as an independent fitting parameter and allowing A to follow dependently. The utility of the correlated parameter fit is demonstrated on thermal denaturation of proteins and cells from the literature as a validation, and new experimental measurements in our lab using FTIR spectroscopy to demonstrate broad applicability of this method. Finally, we demonstrate that the end-temperature within which the denaturation is measured is important and changes the kinetics. Specifically, higher E a and A parameters were found at low end-temperature (50 °C) and reduce as end-temperatures increase to 70 °C. This trend is consistent with Arrhenius parameters for cell injury in the literature that are significantly higher for clonogenics (45–50 °C) vs. membrane dye assays (60–70 °C). Future opportunities to monitor cell injury by spectroscopic measurement of protein denaturation are discussed.


Thermal therapy Kinetics FTIR Differential scanning calorimetry Enthalpy–entropy compensation Protein denaturation 



This project was financially supported by the National Institute of Health (NIH) R01-CA07528. W.F.W. performed work in Minnesota and Hannover for this project and was supported in part by funding from the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) for the Cluster of Excellence REBIRTH (From Regenerative Biology to Reconstructive Therapy). Z.Q was supported by an Interdisciplinary Doctoral Fellowship and Doctoral Dissertation Fellowship. J.C.B. was supported by McKnight Professorship and Carl and Janet Kuhrmeyer Chair in Mechanical Engineering. J.A.P. received partial support for his investigations from the T.L.L. Temple and O-Donnell Foundations, and from Transonic/Scisense Inc. We thank Dr. Neil Wright for his insightful comments.

Supplementary material

10439_2014_1100_MOESM1_ESM.pdf (192 kb)
Supplementary material 1 (PDF 193 kb)


  1. 1.
    Alberts, B. Essential Cell Biology: An Introduction to the Molecular Biology of the Cell. New York: Taylor & Francis, 1998.Google Scholar
  2. 2.
    Aravalli, R. N., J. Choi, S. Mori, D. Mehra, J. C. Bischof, and E. N. Cressman. Spectroscopic and calorimetric evaluation of chemically induced protein denaturation in HuH-7 liver cancer cells and impact on cell survival. Technol. Cancer Res. Treat. 11:467–473, 2012.PubMedGoogle Scholar
  3. 3.
    Balasubramanian, S. K., W. F. Wolkers, and J. C. Bischof. Thermal “Fingerprinting” of Cells Using FTIR, ASME 2007 Summer Bioengineering Conference, American Society of Mechanical Engineers, 2007; pp. 87–88.Google Scholar
  4. 4.
    Banks, B., V. Damjanovic, and C. Vernon. The so-called thermodynamic compensation law and thermal death. Nature 240:147–148, 1972.CrossRefGoogle Scholar
  5. 5.
    Barrie, P. J. The mathematical origins of the kinetic compensation effect: 2. The effect of systematic errors. Phys. Chem. Chem. Phys. 14:327–336, 2012.PubMedCrossRefGoogle Scholar
  6. 6.
    Barrie, P. J. The mathematical origins of the kinetic compensation effect: 1. The effect of random experimental errors. Phys. Chem. Chem. Phys. 14:318–326, 2012.PubMedCrossRefGoogle Scholar
  7. 7.
    Bhowmick, S., D. J. Swanlund, and J. C. Bischof. Supraphysiological thermal injury in dunning AT-1 prostate tumor cells. J. Biomech. Eng. 122:51–59, 2000.PubMedCrossRefGoogle Scholar
  8. 8.
    Carpentier, A., J. Itzcovitz, D. Payen, B. George, R. J. McNichols, A. Gowda, R. J. Stafford, J.-P. Guichard, D. Reizine, and S. Delaloge. Real time magnetic resonance guided laser thermal therapy for focal metastatic brain tumors. Neurosurgery 63:ONS21–ONS29, 2008.PubMedCrossRefGoogle Scholar
  9. 9.
    Daggett, V. Molecular dynamics simulations of the protein unfolding/folding reaction. Acc. Chem. Res. 35:422–429, 2002.PubMedCrossRefGoogle Scholar
  10. 10.
    Daggett, V. Protein folding-simulation. Chem. Rev. 106:1898–1916, 2006.PubMedCrossRefGoogle Scholar
  11. 11.
    Dewey, W. Arrhenius relationships from the molecule and cell to the clinic. Int. J. Hyperthermia 10:457–483, 1994.PubMedCrossRefGoogle Scholar
  12. 12.
    Eissing, T., H. Conzelmann, E. D. Gilles, F. Allgower, E. Bullinger, and P. Scheurich. Bistability analyses of a caspase activation model for receptor-induced apoptosis. J. Biol. Chem. 279:36892–36897, 2004.PubMedCrossRefGoogle Scholar
  13. 13.
    Elliott, A. M., R. J. Stafford, J. Schwartz, J. Wang, A. M. Shetty, C. Bourgoyne, P. O’Neal, and J. D. Hazle. Laser-induced thermal response and characterization of nanoparticles for cancer treatment using magnetic resonance thermal imaging. Med. Phys. 34:3102–3108, 2007.PubMedCrossRefGoogle Scholar
  14. 14.
    Eyring, H. The activated complex in chemical reactions. J. Chem. Phys. 3:107, 1935.CrossRefGoogle Scholar
  15. 15.
    Feng, Y., D. Fuentes, A. Hawkins, J. Bass, M. N. Rylander, A. Elliott, A. Shetty, R. J. Stafford, and J. T. Oden. Nanoshell-mediated laser surgery simulation for prostate cancer treatment. Eng. Comput. 25:3–13, 2009.PubMedCentralPubMedCrossRefGoogle Scholar
  16. 16.
    Frensdorff, H., M. Watson, and W. Kauzmann. The kinetics of protein denaturation. IV. The viscosity and gelation of urea solutions of ovalbumin. J. Am. Chem. Soc. 75:5157–5166, 1953.CrossRefGoogle Scholar
  17. 17.
    He, X., S. Bhowmick, and J. C. Bischof. Thermal therapy in urologic systems: a comparison Of Arrhenius and thermal isoeffective dose models in predicting hyperthermic injury. J. Biomech. Eng. 131:074507, 2009.PubMedCrossRefGoogle Scholar
  18. 18.
    He, X., and J. C. Bischof. Quantification of temperature and injury response in thermal therapy and cryosurgery. Crit. Rev. Biomed. Eng. 31:355–421, 2003.PubMedCrossRefGoogle Scholar
  19. 19.
    He, X., W. F. Wolkers, J. H. Crowe, D. J. Swanlund, and J. C. Bischof. In situ thermal denaturation of proteins in dunning AT-1 prostate cancer cells: implication for hyperthermic cell injury. Ann. Biomed. Eng. 32:1384–1398, 2004.PubMedCrossRefGoogle Scholar
  20. 20.
    Huntington, J. A., and P. E. Stein. Structure and properties of ovalbumin. J. Chromatogr. B 756:189–198, 2001.CrossRefGoogle Scholar
  21. 21.
    Krug, R. R., W. G. Hunter, and R. A. Grieger. Enthalpy–entropy compensation. 2. Separation of the chemical from the statistical effect. J. Phys. Chem. 80:2341–2351, 1976.CrossRefGoogle Scholar
  22. 22.
    Lepock, J. R., H. E. Frey, and K. P. Ritchie. Protein denaturation in intact hepatocytes and isolated cellular organelles during heat shock. J. Cell Biol. 122:1267–1276, 1993.PubMedCrossRefGoogle Scholar
  23. 23.
    Lepock, J. R., K. P. Ritchie, M. C. Kolios, A. M. Rodahl, K. A. Heinz, and J. Kruuv. Influence of transition rates and scan rate on kinetic simulations of differential scanning calorimetry profiles of reversible and irreversible protein denaturation. Biochemistry 31:12706–12712, 1992.PubMedCrossRefGoogle Scholar
  24. 24.
    Lumry, R., and H. Eyring. Conformation changes of proteins. J. Phys. Chem. 58:110–120, 1954.CrossRefGoogle Scholar
  25. 25.
    Lung, D. C., T. F. Stahovich, and Y. Rabin. Computerized planning for multiprobe cryosurgery using a force-field analogy. Comput. Methods Biomech. Biomed. Eng. 7:101–110, 2004.CrossRefGoogle Scholar
  26. 26.
    Maron, S. H., J. B. Lando, and C. F. Prutton. Fundamentals of physical chemistry. New York: Macmillan, 1974.Google Scholar
  27. 27.
    Mayor, U., N. R. Guydosh, C. M. Johnson, J. G. N. Grossmann, S. Sato, G. S. Jas, S. M. Freund, D. O. Alonso, V. Daggett, and A. R. Fersht. The Complete Folding Pathway of a Protein From Nanoseconds to Microseconds. Nature 421:863–867, 2003.PubMedCrossRefGoogle Scholar
  28. 28.
    Miles, C. A. Kinetics of the helix/coil transition of the collagen-like peptide (Pro-Hyp-Gly)10. Biopolymers 87:51–67, 2007.PubMedCrossRefGoogle Scholar
  29. 29.
    Miles, C. A., and A. J. Bailey. Studies of the collagen-like Peptide (Pro-Pro-Gly)10 confirm that the shape and position of the type I collagen denaturation endotherm is governed by the rate of helix unfolding. J. Mol. Biol. 337:917–931, 2004.PubMedCrossRefGoogle Scholar
  30. 30.
    Miles, C. A., T. V. Burjanadze, and A. J. Bailey. The kinetics of the thermal denaturation of collagen in unrestrained rat tail tendon determined by differential scanning calorimetry. J. Mol. Biol. 245:437–446, 1995.PubMedCrossRefGoogle Scholar
  31. 31.
    Pearce, J. A. Relationship between Arrhenius models of thermal damage and the CEM 43 thermal dose, SPIE BiOS: Biomedical Optics, 2009; pp. 718104–718104-15.Google Scholar
  32. 32.
    Pearce, J. A. Comparative analysis of mathematical models of cell death and thermal damage processes. Int. J. Hyperthermia 29:262–280, 2013.PubMedCrossRefGoogle Scholar
  33. 33.
    Qin, Z., and J. C. Bischof. Thermophysical and biological responses of gold nanoparticle laser heating. Chem. Soc. Rev. 41:1191–1217, 2012.PubMedCrossRefGoogle Scholar
  34. 34.
    Relkin, P., and D. Mulvihill. Thermal unfolding of β-lactoglobulin, α-lactalbumin, and bovine serum albumin. A thermodynamic approach. Crit. Rev. Food Sci. Nutr. 36:565–601, 1996.PubMedCrossRefGoogle Scholar
  35. 35.
    Rosenberg, B., G. Kemeny, R. C. Switzer, and T. C. Hamilton. Quantitative evidence for protein denaturation as the cause of thermal death. Nature 232:471–473, 1971.PubMedCrossRefGoogle Scholar
  36. 36.
    Salloum, M., R. Ma, and L. Zhu. Enhancement in treatment planning for magnetic nanoparticle hyperthermia: optimization of the heat absorption pattern. Int. J. Hyperther. 25:309–321, 2009.CrossRefGoogle Scholar
  37. 37.
    Sanchez-Ruiz, J. M. Theoretical analysis of Lumry–Eyring models in differential scanning calorimetry. Biophys. J. 61:921–935, 1992.PubMedCentralPubMedCrossRefGoogle Scholar
  38. 38.
    Sapareto, S. A., L. E. Hopwood, W. C. Dewey, M. R. Raju, and J. W. Gray. Effects of hyperthermia on survival and progression of Chinese Hamster Ovary Cells. Cancer Res. 38:393–400, 1978.PubMedGoogle Scholar
  39. 39.
    Schwaab, M., and J. C. Pinto. Optimum reference temperature for reparameterization of the Arrhenius equation. Part 1. Problems involving one kinetic constant. Chem. Eng. Sci. 62:2750–2764, 2007.CrossRefGoogle Scholar
  40. 40.
    Shanmugam, G., and P. L. Polavarapu. Vibrational circular dichroism spectra of protein films: thermal denaturation of bovine serum albumin. Biophys. Chem. 111:73–77, 2004.PubMedCrossRefGoogle Scholar
  41. 41.
    Tanford, C. Protein denaturation. Adv. Protein Chem. 23:121–282, 1968.PubMedCrossRefGoogle Scholar
  42. 42.
    Thomsen, S. L., and J. A. Pearce. Thermal damage and rate processes in tissues. In: Optical-Thermal Response of Laser-Irradiated Tissue, edited by A. Welch, and M. J. C. Van Gemert. Dordrecht, The Netherlands: Springer, 2011, pp. 487–549.Google Scholar
  43. 43.
    Thomsen, S., J. A. Pearce, and W.-F. Cheong. Changes in birefringence as markers of thermal damage in tissues. IEEE Trans. Biomed. Eng. 36:1174–1179, 1989.PubMedCrossRefGoogle Scholar
  44. 44.
    Vajpai, N., L. Nisius, M. Wiktor, and S. Grzesiek. High-pressure NMR reveals close similarity between cold and alcohol protein denaturation in ubiquitin. Proc. Natl. Acad. Sci. USA 110:E368–E376, 2013.PubMedCentralPubMedCrossRefGoogle Scholar
  45. 45.
    Wang, Y., K. Murayama, Y. Myojo, R. Tsenkova, N. Hayashi, and Y. Ozaki. Two-dimensional fourier transform near-infrared spectroscopy study of heat denaturation of ovalbumin in aqueous solutions. J. Phys. Chem. B 102:6655–6662, 1998.CrossRefGoogle Scholar
  46. 46.
    Weijers, M., P. A. Barneveld, C. Stuart, A. Martien, and R. W. Visschers. Heat-induced denaturation and aggregation of ovalbumin at neutral pH described by irreversible first-Order kinetics. Protein Sci. 12:2693–2703, 2003.PubMedCentralPubMedCrossRefGoogle Scholar
  47. 47.
    Wolkers, W. F., S. K. Balasubramanian, E. L. Ongstad, H. C. Zec, and J. C. Bischof. Effects of freezing on membranes and proteins in LNCaP prostate tumor cells. Biochim. Biophys. Acta 1768:728–736, 2007.PubMedCentralPubMedCrossRefGoogle Scholar
  48. 48.
    Wright, N. T. On a relationship between the Arrhenius parameters from thermal damage studies. J. Biomech. Eng. 125:300–304, 2003.PubMedCrossRefGoogle Scholar
  49. 49.
    Wright, N., and J. Humphrey. Denaturation of collagen via heating: an irreversible rate process. Annu. Rev. Biomed. Eng. 4:109–128, 2002.PubMedCrossRefGoogle Scholar
  50. 50.
    Yan, C., V. Pattani, J. W. Tunnell, and P. Ren. Temperature-induced unfolding of epidermal growth factor (EGF): insight from molecular dynamics simulation. J. Mol. Graphics Modell. 29:2–12, 2010.CrossRefGoogle Scholar
  51. 51.
    Yelon, A., and B. Movaghar. Microscopic explanation of the compensation (Meyer–Neldel) rule. Phys. Rev. Lett. 65:618–620, 1990.PubMedCrossRefGoogle Scholar
  52. 52.
    Yelon, A., B. Movaghar, and H. Branz. Origin and consequences of the compensation (Meyer–Neldel) law. Phys. Rev. B 46:12244, 1992.CrossRefGoogle Scholar
  53. 53.
    Yelon, A., B. Movaghar, and R. Crandall. Multi-excitation entropy: its role in thermodynamics and kinetics. Rep. Prog. Phys. 69:1145–1194, 2006.CrossRefGoogle Scholar
  54. 54.
    Zamyatnin, A. Amino acid, peptide, and protein volume in solution. Ann. Rev. Biphys. Bioeng. 13:145–165, 1984.CrossRefGoogle Scholar

Copyright information

© Biomedical Engineering Society 2014

Authors and Affiliations

  • Zhenpeng Qin
    • 1
  • Saravana Kumar Balasubramanian
    • 1
  • Willem F. Wolkers
    • 4
  • John A. Pearce
    • 5
  • John C. Bischof
    • 1
    • 2
    • 3
    Email author
  1. 1.Department of Mechanical EngineeringUniversity of MinnesotaMinneapolisUSA
  2. 2.Department of Biomedical EngineeringUniversity of MinnesotaMinneapolisUSA
  3. 3.Department of Urologic SurgeryUniversity of MinnesotaMinneapolisUSA
  4. 4.Institute of Multiphase ProcessesLeibniz Universität HannoverHannoverGermany
  5. 5.Department of Electrical and Computer EngineeringUniversity of Texas at AustinAustinUSA

Personalised recommendations