Skip to main content

Advertisement

Log in

Structural and Mechanical Adaptations of Right Ventricle Free Wall Myocardium to Pressure Overload

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Right ventricular (RV) failure in response to pulmonary hypertension (PH) is a severe disease that remains poorly understood. PH-induced pressure overload leads to changes in the RV free wall (RVFW) that eventually results in RV failure. While the development of computational models can benefit our understanding of the onset and progression of PH-induced pressure overload, detailed knowledge of the underlying structural and biomechanical events remains limited. The goal of the present study was to elucidate the structural and biomechanical adaptations of RV myocardium subjected to sustained pressure overload in a rat model. Hemodynamically confirmed severe chronic RV pressure overload was induced in Sprague–Dawley rats via pulmonary artery banding. Extensive tissue-level biaxial mechanical and histomorphological analyses were conducted to assess the remodeling response in the RV free wall. Simultaneous myofiber hypertrophy and longitudinal re-orientation of myo- and collagen fibers were observed, with both fiber types becoming more highly aligned. Transmural myo- and collagen fiber orientations were co-aligned in both the normal and diseased state. The overall tissue stiffness increased, with larger increases in longitudinal vs. circumferential stiffness. The latter was attributed to longitudinal fiber re-orientation, which increased the degree of anisotropy. Increased mechanical coupling between the two axes was attributed to the increased fiber alignment. Interestingly, estimated myofiber stiffness increased while the collagen fiber stiffness remained unchanged. The increased myofiber stiffness was consistent with clinical results showing titin-associated increased sarcomeric stiffening observed in PH patients. These results further our understanding of the underlying adaptive and maladaptive remodeling mechanisms and may lead to improved techniques for prognosis, diagnosis, and treatment for PH.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

Abbreviations

RV:

Right ventricle

RVFW:

RV free wall

PA:

Pulmonary artery

RVESP:

RV end-systolic pressure

RVEDV:

RV end-diastolic volume

SV:

Stroke volume

SW:

Stroke work

Maximum dP/dt :

Maximal first time-derivative of pressure (a measure of systolic function)

Tau:

RV diastolic time constant (a measure of diastolic function)

Ees :

RV elastance (a measure of contractility)

Ea :

PA elastance (a measure of afterload)

Ees/Ea :

RV–PA coupling

E LL :

Green’s strain in longitudinal direction

E CC :

Green’s strain in circumferential direction

S LL :

2nd Piola–Kirchhoff (PK) stress in longitudinal direction

S CC :

2nd PK stress in circumferential direction

b 0 :

Model scaling parameter

b L :

Model parameter, representing longitudinal stiffness

b C :

Model parameter, representing circumferential stiffness

b LC :

Model parameter, representing coupling, between longitudinal and circumferential response

S ens :

Combined myofiber-collagen effective fiber ensemble stress

E ens :

Combined myofiber-collagen effective fiber ensemble strain

\(\Phi_{\text{m}}\) :

Mass fraction of myofibers

\(\Phi_{\text{c}}\) :

Mass fraction of collagen fibers

\(\eta_{\text{m}}\) :

Intrinsic myofiber modulus

\(\bar{\eta }_{\text{c}}\) :

Intrinsic collagen fiber modulus, that accounts for the effects of gradual fiber recruitment

E lb :

Lower bound on recruitment strain for the collagen fiber ensemble

E ub :

Upper bound on recruitment strain for the collagen fiber ensemble

PTTM:

Post-transition tangent modulus

References

  1. Archer, S. L., and E. D. Michelakis. An evidence-based approach to the management of pulmonary arterial hypertension. Curr. Opin. Cardiol. 21(4):385–392, 2006.

  2. Benza, R. L., M. H. Park, A. Keogh, and R. E. Girgis. Management of pulmonary arterial hypertension with a focus on combination therapies. J. Heart Lung Transplant. 26(5):437–446, 2007.

    Article  PubMed  Google Scholar 

  3. Billiar, K. L., and M. S. Sacks. Biaxial mechanical properties of the native and glutaraldehyde-treated aortic valve cusp: Part II–A structural constitutive model. J. Biomech. Eng. 122(4):327–335, 2000.

    Article  CAS  PubMed  Google Scholar 

  4. Bogaard, H. J., K. Abe, A. Vonk Noordegraaf, and N. F. Voelkel. The right ventricle under pressure: cellular and molecular mechanisms of right-heart failure in pulmonary hypertension. Chest 135(3):794–804, 2009.

    Article  CAS  PubMed  Google Scholar 

  5. Brand, M. D., and D. G. Nicholls. Assessing mitochondrial dysfunction in cells. Biochem. J. 435(2):297–312, 2011.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Bristow, M. R., L. S. Zisman, B. D. Lowes, W. T. Abraham, D. B. Badesch, B. M. Groves, N. F. Voelkel, D. M. Lynch, and R. A. Quaife. The pressure-overloaded right ventricle in pulmonary hypertension. Chest 114(1 Suppl):101S–106S, 1998.

    Article  CAS  PubMed  Google Scholar 

  7. Campo, A., S. C. Mathai, J. Le Pavec, A. L. Zaiman, L. K. Hummers, D. Boyce, T. Housten, H. C. Champion, N. Lechtzin, F. M. Wigley, R. E. Girgis, and P. M. Hassoun. Hemodynamic predictors of survival in scleroderma-related pulmonary arterial hypertension. Am. J. Respir. Crit. Care Med. 182(2):252–260, 2010.

    Article  PubMed Central  PubMed  Google Scholar 

  8. Carlsson, M., M. Ugander, E. Heiberg, and H. Arheden. The quantitative relationship between longitudinal and radial function in left, right, and total heart pumping in humans. Am. J. Physiol. Heart Circ. Physiol. 293(1):H636–H644, 2007.

    Article  CAS  PubMed  Google Scholar 

  9. Caulfield, J. B., and T. K. Borg. The collagen network of the heart. Lab. Investig. 40(3):364–372, 1979.

    CAS  PubMed  Google Scholar 

  10. Champion, H. C., E. D. Michelakis, and P. M. Hassoun. Comprehensive invasive and noninvasive approach to the right ventricle-pulmonary circulation unit: state of the art and clinical and research implications. Circulation 120(11):992–1007, 2009.

    Article  PubMed  Google Scholar 

  11. Chance, B., and G. R. Williams. Respiratory enzymes in oxidative phosphorylation. I. Kinetics of oxygen utilization. J. Biol. Chem. 217(1):383–393, 1955.

    CAS  PubMed  Google Scholar 

  12. Choi, H. S., and R. P. Vito. Two-dimensional stress–strain relationship for canine pericardium. J. Biomech. Eng. 112(2):153–159, 1990.

    Article  CAS  PubMed  Google Scholar 

  13. Chuong, C. J., M. S. Sacks, G. Templeton, F. Schwiep, and R. L. Johnson, Jr. Regional deformation and contractile function in canine right ventricular free wall. Am. J. Physiol. 260(4 Pt 2):H1224–H1235, 1991.

    CAS  PubMed  Google Scholar 

  14. Cohn, J. N., R. Ferrari, and N. Sharpe. Cardiac remodeling-concepts and clinical implications: a consensus paper from an international forum on cardiac remodeling. Behalf of an International Forum on Cardiac Remodeling. J. Am. Coll. Cardiol. 35(3):569–582, 2000.

    Article  CAS  PubMed  Google Scholar 

  15. Courtney, T., M. S. Sacks, J. Stankus, J. Guan, and W. R. Wagner. Design and analysis of tissue engineering scaffolds that mimic soft tissue mechanical anisotropy. Biomaterials 27(19):3631–3638, 2006.

    CAS  PubMed  Google Scholar 

  16. D’Alonzo, G. E., R. J. Barst, S. M. Ayres, E. H. Bergofsky, B. H. Brundage, K. M. Detre, A. P. Fishman, R. M. Goldring, B. M. Groves, J. T. Kernis, P. S. Levy, G. G. Pietra, L. M. Reid, J. T. Reeves, S. Rich, C. E. Vreim, G. W. Williams, and M. Wu. Survival in patients with primary pulmonary hypertension. Results from a national prospective registry. Ann. Intern. Med. 115(5):343–349, 1991.

    Article  PubMed  Google Scholar 

  17. Eriksson, T. S., A. J. Prassl, G. Plank, and G. A. Holzapfel. Modeling the dispersion in electromechanically coupled myocardium. Int. J. Numer. Method Biomed. Eng. 29(11):1267–1284, 2013.

    Article  PubMed Central  PubMed  Google Scholar 

  18. Faber, M. J., M. Dalinghaus, I. M. Lankhuizen, P. Steendijk, W. C. Hop, R. G. Schoemaker, D. J. Duncker, J. M. Lamers, and W. A. Helbing. Right and left ventricular function after chronic pulmonary artery banding in rats assessed with biventricular pressure–volume loops. Am. J. Physiol. Heart Circ. Physiol. 291(4):H1580–H1586, 2006.

    Article  CAS  PubMed  Google Scholar 

  19. Fata, B., W. Zhang, R. Amini, and M. Sacks. Insights into regional adaptations in the growing pulmonary artery using a meso-scale structural model: effects of ascending aorta impingement. J. Biomech. Eng. 136(2):021009, 2014.

  20. Fisher, M. R., P. R. Forfia, E. Chamera, T. Housten-Harris, H. C. Champion, R. E. Girgis, M. C. Corretti, and P. M. Hassoun. Accuracy of Doppler echocardiography in the hemodynamic assessment of pulmonary hypertension. Am. J. Respir. Crit. Care Med. 179(7):615–621, 2009.

    Article  PubMed Central  PubMed  Google Scholar 

  21. Forfia, P. R., M. R. Fisher, S. C. Mathai, T. Housten-Harris, A. R. Hemnes, B. A. Borlaug, E. Chamera, M. C. Corretti, H. C. Champion, T. P. Abraham, R. E. Girgis, and P. M. Hassoun. Tricuspid annular displacement predicts survival in pulmonary hypertension. Am. J. Respir. Crit. Care Med. 174(9):1034–1041, 2006.

    Article  PubMed  Google Scholar 

  22. Forfia, P. R., S. C. Mathai, M. R. Fisher, T. Housten-Harris, A. R. Hemnes, H. C. Champion, R. E. Girgis, and P. M. Hassoun. Hyponatremia predicts right heart failure and poor survival in pulmonary arterial hypertension. Am. J. Respir. Crit. Care Med. 177(12):1364–1369, 2008.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Freed, A. D., D. R. Einstein, and I. Vesely. Invariant formulation for dispersed transverse isotropy in aortic heart valves: an efficient means for modeling fiber splay. Biomech. Model. Mechanobiol. 4(2–3):100–117, 2005.

    Article  PubMed  Google Scholar 

  24. Fung, Y. C. Biomechanics: Mechanical Properties of Living Tissues. New York: Springer, 1993.

    Book  Google Scholar 

  25. Galie, N., M. M. Hoeper, M. Humbert, A. Torbicki, J. L. Vachiery, J. A. Barbera, M. Beghetti, P. Corris, S. Gaine, J. S. Gibbs, M. A. Gomez-Sanchez, G. Jondeau, W. Klepetko, C. Opitz, A. Peacock, L. Rubin, M. Zellweger, and G. Simonneau. Guidelines for the diagnosis and treatment of pulmonary hypertension: the Task Force for the Diagnosis and Treatment of Pulmonary Hypertension of the European Society of Cardiology (ESC) and the European Respiratory Society (ERS), endorsed by the International Society of Heart and Lung Transplantation (ISHLT). Eur. Heart J. 30(20):2493–2537, 2009.

    Article  PubMed  Google Scholar 

  26. Gasser, T. C., R. W. Ogden, and G. A. Holzapfel. Hyperelastic modelling of arterial layers with distributed collagen fibre orientations. J. R. Soc. Interface 3(6):15–35, 2006.

    Article  PubMed Central  PubMed  Google Scholar 

  27. George, M. P., H. C. Champion, and J. M. Pilewski. Lung transplantation for pulmonary hypertension. Pulm. Circ. 1(2):182–191, 2011.

    Article  PubMed Central  PubMed  Google Scholar 

  28. Grossman, W., D. Jones, and L. P. McLaurin. Wall stress and patterns of hypertrophy in the human left ventricle. J. Clin. Investig. 56(1):56–64, 1975.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Grossman, W., and W. J. Paulus. Myocardial stress and hypertrophy: a complex interface between biophysics and cardiac remodeling. J. Clin. Investig. 123(9):3701–3703, 2013.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Hemnes, A. R., and H. C. Champion. Right heart function and haemodynamics in pulmonary hypertension. Int. J. Clin. Pract. 62:11–19, 2008.

    Article  Google Scholar 

  31. Holzapfel, G. A. Nonlinear Solid Mechanics: A Continuum Approach for Engineering. New York: Wiley, 2000.

    Google Scholar 

  32. Holzapfel, G. A., and T. C. Gasser. A new constitutive framework for arterial wall mechanics and a comparative study of material models. J. Elast. 61:1–48, 2000.

    Article  Google Scholar 

  33. Horowitz, A., Y. Lanir, F. C. Yin, M. Perl, I. Sheinman, and R. K. Strumpf. Structural three-dimensional constitutive law for the passive myocardium. J. Biomech. Eng. 110(3):200–207, 1988.

    Article  CAS  PubMed  Google Scholar 

  34. Humphrey, J. D., and K. R. Rajagopal. A constrained mixture model for growth and remodeling of soft tissues. Math. Models Methods Appl. Sci. 12(3):407–430, 2002.

    Article  Google Scholar 

  35. Jammalamadaka, S. R., and A. Sengupta. Topics in Circular Statistics. River Edge, NJ: World Scientific, 2001.

    Google Scholar 

  36. Janicki, J. S., G. L. Brower, J. D. Gardner, M. F. Forman, J. A. Stewart, Jr., D. B. Murray, and A. L. Chancey. Cardiac mast cell regulation of matrix metalloproteinase-related ventricular remodeling in chronic pressure or volume overload. Cardiovasc. Res. 69(3):657–665, 2006.

    Article  CAS  PubMed  Google Scholar 

  37. Karlon, W. J., J. W. Covell, A. D. McCulloch, J. J. Hunter, and J. H. Omens. Automated measurement of myofiber disarray in transgenic mice with ventricular expression of ras. Anat. Rec. 252(4):612–625, 1998.

    Article  CAS  PubMed  Google Scholar 

  38. Kass, D. J., E. Rattigan, R. Kahloon, K. Loh, L. Yu, A. Savir, M. Markowski, A. Saqi, R. Rajkumar, F. Ahmad, and H. C. Champion. Early treatment with fumagillin, an inhibitor of methionine aminopeptidase-2, prevents Pulmonary Hypertension in monocrotaline-injured rats. PLoS ONE 7(4):e35388, 2012.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. Kuehne, T., S. Yilmaz, P. Steendijk, P. Moore, M. Groenink, M. Saaed, O. Weber, C. B. Higgins, P. Ewert, E. Fleck, E. Nagel, I. Schulze-Neick, and P. Lange. Magnetic resonance imaging analysis of right ventricular pressure-volume loops: in vivo validation and clinical application in patients with pulmonary hypertension. Circulation 110(14):2010–2016, 2004.

    Article  PubMed  Google Scholar 

  40. Lin, D. H., and F. C. Yin. A multiaxial constitutive law for mammalian left ventricular myocardium in steady-state barium contracture or tetanus. J. Biomech. Eng. 120(4):504–517, 1998.

    Article  CAS  PubMed  Google Scholar 

  41. Mahan, R. P. Circular Statistical Methods: Applications in Spatial and Temporal Performance Analysis. Special Report 16. Alexandria, Virginia, United States Army Research Institute for the Behavioral and Social Sciences, 1991.

  42. Maughan, W. L., A. A. Shoukas, K. Sagawa, and M. L. Weisfeldt. Instantaneous pressure–volume relationship of the canine right ventricle. Circ. Res. 44(3):309–315, 1979.

    Article  CAS  PubMed  Google Scholar 

  43. Onat, E. T., and F. A. Leckie. Representation of mechanical-behavior in the presence of changing internal structure. J. Appl. Mech. Trans. ASME 55(1):1–10, 1988.

    Article  Google Scholar 

  44. Rain, S., M. L. Handoko, P. Trip, C. T. Gan, N. Westerhof, G. J. Stienen, W. J. Paulus, C. A. Ottenheijm, J. T. Marcus, P. Dorfmuller, C. Guignabert, M. Humbert, P. Macdonald, C. Dos Remedios, P. E. Postmus, C. Saripalli, C. G. Hidalgo, H. L. Granzier, A. Vonk-Noordegraaf, J. van der Velden, and F. S. de Man. Right ventricular diastolic impairment in patients with pulmonary arterial hypertension. Circulation 128(18):2016–2025; 1-10, 2013.

  45. Sacks, M. Biaxial mechanical evaluation of planar biological materials. J. Elast. 61:199–246, 2000.

    Article  Google Scholar 

  46. Sacks, M. S. Incorporation of experimentally-derived fiber orientation into a structural constitutive model for planar collagenous tissues. J. Biomech. Eng. 125(2):280–287, 2003.

    Article  PubMed  Google Scholar 

  47. Sacks, M. S., and C. J. Chuong. Orthotropic mechanical properties of chemically treated bovine pericardium. Ann. Biomed. Eng. 26(5):892–902, 1998.

    Article  CAS  PubMed  Google Scholar 

  48. Sanz, J., A. Garcia-Alvarez, L. Fernandez-Friera, A. Nair, J. G. Mirelis, S. T. Sawit, S. Pinney, and V. Fuster. Right ventriculo-arterial coupling in pulmonary hypertension: a magnetic resonance study. Heart 98(3):238–243, 2012.

    Article  PubMed  Google Scholar 

  49. Streeter, Jr., D. D., H. M. Spotnitz, D. P. Patel, J. Ross, Jr., and E. H. Sonnenblick. Fiber orientation in the canine left ventricle during diastole and systole. Circ. Res. 24(3):339–347, 1969.

    Article  PubMed  Google Scholar 

  50. Suga, H., and K. Sagawa. Instantaneous pressure–volume relationships and their ratio in the excised, supported canine left ventricle. Circ. Res. 35(1):117–126, 1974.

    Article  CAS  PubMed  Google Scholar 

  51. Sugden, P. H., and A. Clerk. Cellular mechanisms of cardiac hypertrophy. J. Mol. Med. (Berl.) 76(11):725–746, 1998.

    Article  CAS  Google Scholar 

  52. Sun, W., M. S. Sacks, T. L. Sellaro, W. S. Slaughter, and M. J. Scott. Biaxial mechanical response of bioprosthetic heart valve biomaterials to high in-plane shear. J. Biomech. Eng. 125:372–380, 2003.

    Article  PubMed  Google Scholar 

  53. Tedford, R. J., J. O. Mudd, R. E. Girgis, S. C. Mathai, A. L. Zaiman, T. Housten-Harris, D. Boyce, B. W. Kelemen, A. C. Bacher, A. A. Shah, L. K. Hummers, F. M. Wigley, S. D. Russell, R. Saggar, R. Saggar, W. L. Maughan, P. M. Hassoun, and D. A. Kass. Right ventricular dysfunction in systemic sclerosis-associated pulmonary arterial hypertension. Circ. Heart Fail. 6(5):953–963, 2013.

    Article  CAS  PubMed  Google Scholar 

  54. Tonelli, A. R., V. Arelli, O. A. Minai, J. Newman, N. Bair, G. A. Heresi, and R. A. Dweik. Causes and circumstances of death in pulmonary arterial hypertension. Am. J. Respir. Crit. Care Med. 188(3):365–369, 2013.

    Article  PubMed Central  PubMed  Google Scholar 

  55. Trip, P., E. J. Nossent, F. S. de Man, I. A. van den Berk, A. Boonstra, H. Groepenhoff, E. M. Leter, N. Westerhof, K. Grunberg, H. J. Bogaard, and A. Vonk Noordegraaf. Severely reduced diffusion capacity in idiopathic pulmonary arterial hypertension—patient characteristics and treatment responses. Eur. Respir. J. 42(6):1575–1585, 2013.

  56. Valdez-Jasso, D., M. A. Simon, H. C. Champion, and M. S. Sacks. A murine experimental model for the mechanical behaviour of viable right-ventricular myocardium. J. Physiol. 590(18):4571–4584, 2012.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  57. Voelkel, N. F., R. Natarajan, J. I. Drake, and H. J. Bogaard. Right ventricle in pulmonary hypertension. Compr. Physiol. 1(1):525–540, 2011.

    PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the U.S. National Institutes of Health [1F32 HL117535 to M.R.H., P01 HL103455 and U01 HL108642-01 to H.C.C.]; the American Heart Association [13POST14720047 to M.R.H., 11POST6950004 to D.V-J., 10BGIA3790022 to M.A.S.]; and The Pittsburgh Foundation [M2010-0052 to M.A.S. and M.S.S.]. We’d like to thank Sunaina Rustagi, Andrea Sebastiani, and Samantha Carter at the University of Pittsburgh (Pitt) for performing the biomechanical testing; Jeffrey J. Baust at Pitt for performing pulmonary artery banding procedures; Sruti Shiva at Pitt for performing the tissue viability study; Simone Siegel, Michelle Atkins, and John Lesicko at the University of Texas at Austin (UT-Austin) for performing the histomorphological analysis.

Conflict of Interest

No benefits in any form have been or will be received from a commercial party related directly or indirectly to the subject of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael S. Sacks.

Additional information

Associate Editor Jane Grande-Allen oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hill, M.R., Simon, M.A., Valdez-Jasso, D. et al. Structural and Mechanical Adaptations of Right Ventricle Free Wall Myocardium to Pressure Overload. Ann Biomed Eng 42, 2451–2465 (2014). https://doi.org/10.1007/s10439-014-1096-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-014-1096-3

Keywords

Navigation