Advertisement

Annals of Biomedical Engineering

, Volume 42, Issue 12, pp 2379–2391 | Cite as

Permeability Analysis of Neuroactive Drugs Through a Dynamic Microfluidic In Vitro Blood–Brain Barrier Model

  • R. BoothEmail author
  • H. Kim
Article

Abstract

This paper presents the permeability analysis of neuroactive drugs and correlation with in vivo brain/plasma ratios in a dynamic microfluidic blood–brain barrier (BBB) model. Permeability of seven neuroactive drugs (Ethosuximide, Gabapentin, Sertraline, Sunitinib, Traxoprodil, Varenicline, PF-304014) and trans-endothelial electrical resistance (TEER) were quantified in both dynamic (microfluidic) and static (transwell) BBB models, either with brain endothelial cells (bEnd.3) in monoculture, or in co-culture with glial cells (C6). Dynamic cultures were exposed to 15 dyn/cm2 shear stress to mimic the in vivo environment. Dynamic models resulted in significantly higher average TEER (respective 5.9-fold and 8.9-fold increase for co-culture and monoculture models) and lower drug permeabilities (average respective decrease of 0.050 and 0.052 log(cm/s) for co-culture and monoculture) than static models; and co-culture models demonstrated higher average TEER (respective 90 and 25% increase for static and dynamic models) and lower drug permeability (average respective decrease of 0.063 and 0.061 log(cm/s) for static and dynamic models) than monoculture models. Correlation of the resultant logP e values [ranging from −4.06 to −3.63 log(cm/s)] with in vivo brain/plasma ratios (ranging from 0.42 to 26.8) showed highly linear correlation (R 2 > 0.85) for all model conditions, indicating the feasibility of the dynamic microfluidic BBB model for prediction of BBB clearance of pharmaceuticals.

Keywords

BBB Central nervous system Drug discovery Endothelial cells Microsystems μBBB 

Abbreviations

μBBB

Microfluidic blood–brain barrier

CAN

Acetonitrile

APTES

3-aminopropyltriethoxysilane

AUC

Area under the curve

B/P

Brain/plasma ratio

BBB

Blood–brain barrier

CNS

Central nervous system

DAPI

4′,6-Diamidino-2-phenylindole

DMSO

Dimethylsiloxane

HPLC

High performance liquid chromatography

LC–MS

Liquid chromatography-mass spectrometry

LDH

Lactate dehydrogenase

OPA

ο-Phthalaldehyde

PBS

Phosphate buffered saline

PC

Polycarbonate

PDMS

Polydimethylsiloxane

PK

Pharmacokinetic

TEER

Trans-endothelial electrical resistance

ZO-1

Zonal occludin-1

Notes

Acknowledgements

This project has been supported by the Utah Science Technology and Research Initiative (USTAR). Microfabrication was performed at the University of Utah Nano Fabrication Facility located in the Sorenson Molecular Biotechnology Building. CNS drugs were provided by Pfizer through the compound transfer program. LC–MS and HPLC–UV was performed at the University of Utah Health Sciences Center (HSC) Core Lab.

References

  1. 1.
    Abbott, N. J. Prediction of blood–brain barrier permeation in drug discovery from in vivo, in vitro and in silico models. Drug Discov. Today Technol. 1:407–416, 2004.PubMedCrossRefGoogle Scholar
  2. 2.
    Achyuta, A. K. H., A. J. Conway, R. B. Crouse, E. C. Bannister, R. N. Lee, C. P. Katnik, A. A. Behensky, J. Cuevas, and S. S. Sundaram. A modular approach to create a neurovascular unit-on-a-chip. Lab Chip. 13:542–553, 2013.PubMedCrossRefGoogle Scholar
  3. 3.
    Adams, C. P., and V. V. Brantner. Estimating the cost of new drug development: is it really 802 million dollars? Health Aff. (Millwood). 25:420–428, 2006.PubMedCrossRefGoogle Scholar
  4. 4.
    Aran, K., L. A. Sasso, N. Kamdar, and J. D. Zahn. Irreversible, direct bonding of nanoporous polymer membranes to PDMS or glass microdevices. Lab Chip. 10:548–552, 2010.PubMedCrossRefGoogle Scholar
  5. 5.
    Booth, R., and H. Kim. Characterization of a microfluidic in vitro model of the blood–brain barrier (μbbb). Lab Chip. 12:1784–1792, 2012.PubMedCrossRefGoogle Scholar
  6. 6.
    Booth, R., S. Noh, and H. Kim. A multiple-channel, multiple-assay platform for characterization of full-range shear stress effects on vascular endothelial cells. Lab Chip. 14(11):1880–1890, 2014.PubMedCrossRefGoogle Scholar
  7. 7.
    Bynum, J. Unpublished Tabulations Based on Data from the Medicare Current Beneficiary Survey for 2008. Nov 2011, Dartmouth Medical SchoolGoogle Scholar
  8. 8.
    Cecchelli, R., V. Berezowski, S. Lundquist, M. Culot, M. Renftel, M. P. Dehouck, and L. Fenart. Modelling of the blood–brain barrier in drug discovery and development. Nat. Rev. Drug Discov. 6:650–661, 2007.PubMedCrossRefGoogle Scholar
  9. 9.
    Chien, S. Molecular basis of rheological modulation of endothelial functions: importance of stress direction. Biorheology 43:95–116, 2006.PubMedGoogle Scholar
  10. 10.
    Chien, S., S. Li, and Y. J. Shyy. Effects of mechanical forces on signal transduction and gene expression in endothelial cells. Hypertension 31:162–169, 1998.PubMedCrossRefGoogle Scholar
  11. 11.
    Chueh, B. H., D. Huh, C. R. Kyrtsos, T. Houssin, N. Futai, and S. Takayama. Leakage-free bonding of porous membranes into layered microfluidic array systems. Anal. Chem. 79:3504–3508, 2007.PubMedCentralPubMedCrossRefGoogle Scholar
  12. 12.
    Couchman, L., M. Birch, R. Ireland, A. Corrigan, S. Wickramasinghe, D. Josephs, J. Spicer, and R. Flanagan. An automated method for the measurement of a range of tyrosine kinase inhibitors in human plasma or serum using turbulent flow liquid chromatography–tandem mass spectrometry. Anal. Bioanal. Chem. 403:1685–1695, 2012.PubMedCrossRefGoogle Scholar
  13. 13.
    Crivori, P., G. Cruciani, P.-A. Carrupt, and B. Testa. Predicting blood–brain barrier permeation from three-dimensional molecular structure. J. Med. Chem. 43:2204–2216, 2000.PubMedCrossRefGoogle Scholar
  14. 14.
    Cucullo, L., M. S. McAllister, K. Kight, L. Krizanac-Bengez, M. Marroni, M. R. Mayberg, K. A. Stanness, and D. Janigro. A new dynamic in vitro model for the multidimensional study of astrocyte–endothelial cell interactions at the blood–brain barrier. Brain Res. 951:243–254, 2002.PubMedCrossRefGoogle Scholar
  15. 15.
    Cucullo, L., M. Hossain, V. Puvenna, N. Marchi, and D. Janigro. The role of shear stress in blood–brain barrier endothelial physiology. BMC Neurosci. 12:40, 2011.PubMedCentralPubMedCrossRefGoogle Scholar
  16. 16.
    De Boer, A., I. Van Der Sandt, and P. Gaillard. The role of drug transporters at the blood–brain barrier. Ann. Rev. Pharmacol. Toxicol. 43:629–656, 2003.CrossRefGoogle Scholar
  17. 17.
    Deak, K., K. Takacs-Novak, K. Tihanyi, and B. Noszal. Physico-chemical profiling of antidepressive sertraline: solubility, ionisation, lipophilicity. Med. Chem. 2:385–389, 2006.PubMedCrossRefGoogle Scholar
  18. 18.
    Desai, S. Y., M. Marroni, L. Cucullo, L. Krizanac-Bengez, M. R. Mayberg, M. T. Hossain, G. G. Grant, and D. Janigro. Mechanisms of endothelial survival under shear stress. Endothelium 9:89–102, 2002.PubMedCrossRefGoogle Scholar
  19. 19.
    Ferri, C. P., M. Prince, C. Brayne, H. Brodaty, L. Fratiglioni, M. Ganguli, K. Hall, K. Hasegawa, H. Hendrie, and Y. Huang. Global prevalence of dementia: a delphi consensus study. Lancet 366:2112–2117, 2006.CrossRefGoogle Scholar
  20. 20.
    Galan-Valiente, J., R. Soto-Otero, and G. Sierra-Marcuño. Simultaneous measurement of ethosuximide and phenobarbital in brain tissue, serum and urine by HPLC. Biomed. Chromatogr. 3:49–52, 1989.PubMedCrossRefGoogle Scholar
  21. 21.
    Gloor, S. M., M. Wachtel, M. F. Bolliger, H. Ishihara, R. Landmann, and K. Frei. Molecular and cellular permeability control at the blood–brain barrier. Brain Res. Rev. 36:258–264, 2001.PubMedCrossRefGoogle Scholar
  22. 22.
    Griep, L., F. Wolbers, B. de Wagenaar, P. Ter Braak, B. Weksler, I. A. Romero, P. Couraud, I. Vermes, A. van der Meer, and A. van den Berg. BBB on chip: microfluidic platform to mechanically and biochemically modulate blood–brain barrier function. Biomed. Microdevices 15:145–150, 2013.PubMedCrossRefGoogle Scholar
  23. 23.
    Hebert, L. E., L. A. Beckett, P. A. Scherr, and D. A. Evans. Annual incidence of alzheimer disease in the united states projected to the years 2000 through 2050. Alzheimer Dis. Assoc. Disord. 15:169–173, 2001.PubMedCrossRefGoogle Scholar
  24. 24.
    Henderson, J., R. D. Ricker, B. A. Bidlingmeyer, and C. Woodward. Rapid, accurate, sensitive, and reproducible HPLC analysis of amino acids. Amino Acid Anal. Zorbax Eclipse AAA Columns Agilent. 1100:1–10, 2000.Google Scholar
  25. 25.
    Jain, D. S., M. Sanyal, G. Subbaiah, U. Pande, and P. Shrivastav. Rapid and sensitive method for the determination of sertraline in human plasma using liquid chromatography–tandem mass spectrometry (LC–MS/MS). J. Chromatogr. B 829:69–74, 2005.CrossRefGoogle Scholar
  26. 26.
    Johnson, K., A. Shah, S. Jaw-Tsai, J. Baxter, and C. Prakash. Metabolism, pharmacokinetics, and excretion of a highly selectiven-methyl-d-aspartate receptor antagonist, traxoprodil, in human cytochrome p450 2d6 extensive and poor metabolizers. Drug Metab. Dispos. 31:76–87, 2003.PubMedCrossRefGoogle Scholar
  27. 27.
    Kola, I., and J. Landis. Can the pharmaceutical industry reduce attrition rates? Nat. Rev. Drug Discov. 3:711–716, 2004.PubMedCrossRefGoogle Scholar
  28. 28.
    Kushnir, M. M., J. Crossett, P. I. Brown, and F. M. Urry. Analysis of gabapentin in serum and plasma by solid-phase extraction and gas chromatography-mass spectrometry for therapeutic drug monitoring. J. Anal. Toxicol. 23:1–6, 1999.PubMedCrossRefGoogle Scholar
  29. 29.
    Li, G., M. J. Simon, L. M. Cancel, Z. D. Shi, X. Ji, J. M. Tarbell, B. Morrison, 3rd, and B. M. Fu. Permeability of endothelial and astrocyte cocultures: in vitro blood–brain barrier models for drug delivery studies. Ann. Biomed. Eng. 38:2499–2511, 2010.PubMedCentralPubMedCrossRefGoogle Scholar
  30. 30.
    Nakagawa, S., M. A. Deli, H. Kawaguchi, T. Shimizudani, T. Shimono, A. Kittel, K. Tanaka, and M. Niwa. A new blood–brain barrier model using primary rat brain endothelial cells, pericytes and astrocytes. Neurochem. Int. 54:253–263, 2009.PubMedCrossRefGoogle Scholar
  31. 31.
    Neuhaus, W., R. Lauer, S. Oelzant, U. P. Fringeli, G. F. Ecker, and C. R. Noe. A novel flow based hollow-fiber blood–brain barrier in vitro model with immortalised cell line pbmec/c1-2. J. Biotechnol. 125:127–141, 2006.PubMedCrossRefGoogle Scholar
  32. 32.
    Neuhaus, W., V. E. Plattner, M. Wirth, B. Germann, B. Lachmann, F. Gabor, and C. R. Noe. Validation of in vitro cell culture models of the blood–brain barrier: tightness characterization of two promising cell lines. J. Pharm. Sci. 97:5158–5175, 2008.PubMedCrossRefGoogle Scholar
  33. 33.
    Obach, R. S., A. E. Reed-Hagen, S. S. Krueger, B. J. Obach, T. N. O’Connell, K. S. Zandi, S. Miller, and J. W. Coe. Metabolism and disposition of varenicline, a selective α4β2 acetylcholine receptor partial agonist, in vivo and in vitro. Drug Metab. Disposit. 34:121–130, 2006.CrossRefGoogle Scholar
  34. 34.
    Oberoi, R. K., R. K. Mittapalli, J. Fisher, and W. F. Elmquist. Sunitinib LC-MS/MS assay in mouse plasma and brain tissue: application in CNS distribution studies. Chromatographia 76:1657–1665, 2013.CrossRefGoogle Scholar
  35. 35.
    Omidi, Y., L. Campbell, J. Barar, D. Connell, S. Akhtar, and M. Gumbleton. Evaluation of the immortalised mouse brain capillary endothelial cell line, b.End3, as an in vitro blood–brain barrier model for drug uptake and transport studies. Brain Res. 990:95–112, 2003.PubMedCrossRefGoogle Scholar
  36. 36.
    Pangalos, M. N., L. E. Schechter, and O. Hurko. Drug development for CNS disorders: strategies for balancing risk and reducing attrition. Nat. Rev. Drug Discov. 6:521–532, 2007.PubMedCrossRefGoogle Scholar
  37. 37.
    Pardridge, W. M. The blood–brain barrier: bottleneck in brain drug development. NeuroRx. 2:3–14, 2005.PubMedCentralPubMedCrossRefGoogle Scholar
  38. 38.
    Pardridge, W. M., W. H. Oldendorf, P. Cancilla, and H. J. Frank. Blood–brain barrier: interface between internal medicine and the brain. Annal. Intern. Med. 105:82–95, 1986.CrossRefGoogle Scholar
  39. 39.
    Pardridge, W. M., D. Triguero, J. Yang, and P. A. Cancilla. Comparison of in vitro and in vivo models of drug transcytosis through the blood–brain barrier. J. Pharmacol. Exp. Ther. 253:884–891, 1990.PubMedGoogle Scholar
  40. 40.
    Peeters, M., M. J. Gunthorpe, P. J. Strijbos, P. Goldsmith, N. Upton, and M. F. James. Effects of pan- and subtype-selective n-methyl-d-aspartate receptor antagonists on cortical spreading depression in the rat: therapeutic potential for migraine. J. Pharmacol. Exp. Ther. 321:564–572, 2007.PubMedCrossRefGoogle Scholar
  41. 41.
    Polk, B. J., A. Stelzenmuller, G. Mijares, W. MacCrehan, and M. Gaitan. Ag/AgCl microelectrodes with improved stability for microfluidics. Sensors Actuators B 114:239–247, 2006.CrossRefGoogle Scholar
  42. 42.
    Prabhakarpandian, B., M.-C. Shen, J. B. Nichols, I. R. Mills, M. Sidoryk-Wegrzynowicz, M. Aschner, and K. Pant. SyM-BBB: a microfluidic blood brain barrier model. Lab Chip. 13:1093–1101, 2013.PubMedCentralPubMedCrossRefGoogle Scholar
  43. 43.
    Reichel, A. Addressing central nervous system (CNS) penetration in drug discovery: basics and implications of the evolving new concept. Chem. Biodivers. 6:2030–2049, 2009.PubMedCrossRefGoogle Scholar
  44. 44.
    Rollema, H., A. Shrikhande, K. M. Ward, F. D. Tingley, 3rd, J. W. Coe, B. T. O’Neill, E. Tseng, E. Q. Wang, R. J. Mather, R. S. Hurst, K. E. Williams, M. de Vries, T. Cremers, S. Bertrand, and D. Bertrand. Pre-clinical properties of the alpha4beta2 nicotinic acetylcholine receptor partial agonists varenicline, cytisine and dianicline translate to clinical efficacy for nicotine dependence. Br. J. Pharmacol. 160:334–345, 2010.PubMedCentralPubMedCrossRefGoogle Scholar
  45. 45.
    Summerfield, S. G., A. J. Lucas, R. A. Porter, P. Jeffrey, R. N. Gunn, K. R. Read, A. J. Stevens, A. C. Metcalf, M. C. Osuna, P. J. Kilford, J. Passchier, and A. D. Ruffo. Toward an improved prediction of human in vivo brain penetration. Xenobiotica 38:1518–1535, 2008.PubMedCrossRefGoogle Scholar
  46. 46.
    Tzima, E., M. Irani-Tehrani, W. B. Kiosses, E. Dejana, D. A. Schultz, B. Engelhardt, G. Cao, H. DeLisser, and M. A. Schwartz. A mechanosensory complex that mediates the endothelial cell response to fluid shear stress. Nature 437:426–431, 2005.PubMedCrossRefGoogle Scholar
  47. 47.
    Vastag, M., and G. M. Keseru. Current in vitro and in silico models of blood–brain barrier penetration: a practical view. Curr. Opin. Drug Discov. Dev. 12:115–124, 2009.Google Scholar
  48. 48.
    Wang, Y., and D. F. Welty. The simultaneous estimation of the influx and efflux blood–brain barrier permeabilities of gabapentin using a microdialysis-pharmacokinetic approach. Pharm. Res. 13:398–403, 1996.PubMedCrossRefGoogle Scholar
  49. 49.
    Wolburg, H., S. Noell, A. Mack, K. Wolburg-Buchholz, and P. Fallier-Becker. Brain endothelial cells and the glio-vascular complex. Cell Tissue Res. 335:75–96, 2009.PubMedCrossRefGoogle Scholar
  50. 50.
    Wood, K. M., T. A. Lanz, K. J. Coffman, S. L. Becker, J. van Deusen, C. E. Nolan, K. E. Richter, J. E. Finley, T. M. Brown, and M. A. Brodney. P2-375: efficacy of the novel γ-secretase inhibitor, Pf-3084014, in reducing aβ in brain, CSF, and plasma in guinea pigs and tg2576 mice. Alzheimer’s Dement. 4:T482–T483, 2008.CrossRefGoogle Scholar
  51. 51.
    Yuan, W., G. Li, E. S. Gil, T. L. Lowe, and B. M. Fu. Effect of surface charge of immortalized mouse cerebral endothelial cell monolayer on transport of charged solutes. Ann. Biomed. Eng. 38:1463–1472, 2010.PubMedCrossRefGoogle Scholar
  52. 52.
    Zehendner, C. M., H. J. Luhmann, and C. R. Kuhlmann. Studying the neurovascular unit: an improved blood–brain barrier model. J. Cereb. Blood Flow Metab. 29:1879–1884, 2009.PubMedCrossRefGoogle Scholar
  53. 53.
    Zhang, Y., C. S. Li, Y. Ye, K. Johnson, J. Poe, S. Johnson, W. Bobrowski, R. Garrido, and C. Madhu. Porcine brain microvessel endothelial cells as an in vitro model to predict in vivo blood–brain barrier permeability. Drug Metab. Dispos. 34:1935–1943, 2006.PubMedCrossRefGoogle Scholar
  54. 54.
    Zhang, L., H. Zhu, T. I. Oprea, A. Golbraikh, and A. Tropsha. Qsar modeling of the blood–brain barrier permeability for diverse organic compounds. Pharm. Res. 25:1902–1914, 2008.PubMedCrossRefGoogle Scholar

Copyright information

© Biomedical Engineering Society 2014

Authors and Affiliations

  1. 1.Department of BioengineeringUniversity of UtahSalt Lake CityUSA
  2. 2.Department of Electrical and Computer EngineeringUniversity of UtahSalt Lake CityUSA

Personalised recommendations