Annals of Biomedical Engineering

, Volume 42, Issue 12, pp 2537–2550 | Cite as

Improvement of Biodegradability, Bioactivity, Mechanical Integrity and Cytocompatibility Behavior of Biodegradable Mg Based Orthopedic Implants Using Nanostructured Bredigite (Ca7MgSi4O16) Bioceramic Coated via ASD/EPD Technique

  • Mehdi Razavi
  • Mohammadhossein Fathi
  • Omid Savabi
  • Daryoosh Vashaee
  • Lobat TayebiEmail author


This research explored the influence of surface modification of AZ91 Mg alloy on the biodegradation, bioactivity, mechanical integrity and cytocompatibility of the alloy. For this purpose, a nanostructured bredigite (Ca7MgSi4O16) ceramic coating was prepared on biodegradable AZ91 Mg alloy through anodic spark deposition and electrophoretic deposition method. The phase composition and surface morphology of the coated alloy were characterized by X-ray diffraction, scanning electron microscope and transmission electron microscope. The properties of samples were investigated by electrochemical measurements, immersion test, compression examination and cell culturing. The results showed that the degradation resistance, bioactivity, mechanical integrity and cytocompatibility of biodegradable Mg alloy were improved by the anodic spark deposition and electrophorretic deposition of the nanostructured bredigite coating. Therefore, the nanostructured bredigite ceramic coating is identified as a good coating for AZ91 Mg alloy for the purpose of making biodegradable metallic orthopedic implants.


Biomaterials Biodegradable Mg alloy Bredigite Coating Biomedical applications 



The authors are thankful for the contributions of Isfahan University of Technology, Torabinejad Dental Research Center. The work is partially supported by Oklahoma Center for Advancement of Science and Technology (Grant No. AR131-054 8161), AFOSR (Grant No. FA9550-10-1-0010) and the National Science Foundation (NSF, Grant No. 0933763).


  1. 1.
    Anthony, J. W., R. Bideaux, K. Bladh, and M. C. Nichols. Handbook of Mineralogy. Tucson: Mineral Data Publishing, 1990.Google Scholar
  2. 2.
    Blawert, C., W. Dietzel, E. Ghali, and G. Song. Anodizing treatments for magnesium alloys and their effect on corrosion resistance in various environments. Adv. Eng. Mater. 8:511–533, 2006.CrossRefGoogle Scholar
  3. 3.
    Cai, K., A. Rechtenbach, J. Hao, J. Bossert, and K. D. Jandt. Polysaccharide-protein surface modification of titanium via a layer-by-layer technique: characterization and cell behaviour aspects. Biomaterials 26:5960–5971, 2005.PubMedCrossRefGoogle Scholar
  4. 4.
    Castellani, C., R. A. Lindtner, P. Hausbrandt, E. Tschegg, S. E. Stanzl-Tschegg, G. Zanoni, et al. Bone–implant interface strength and osseointegration: biodegradable magnesium alloy vs. standard titanium control. Acta Biomater. 7:432–440, 2011.PubMedCrossRefGoogle Scholar
  5. 5.
    Cui, X., Y. Li, Q. Li, G. Jin, M. Ding, and F. Wang. Influence of phytic acid concentration on performance of phytic acid conversion coatings on the AZ91D magnesium alloy. Mater. Chem. Phys. 111:503–507, 2008.CrossRefGoogle Scholar
  6. 6.
    Fathi, M., M. Meratian, and M. Razavi. Novel magnesium-nanofluorapatite metal matrix nanocomposite with improved biodegradation behavior. J. Biomed. Nanotechnol. 7:441–445, 2011.PubMedCrossRefGoogle Scholar
  7. 7.
    Geng, F., L. Tan, B. Zhang, C. Wu, Y. He, J. Yang, et al. Study on beta-TCP coated porous Mg as a bone tissue engineering scaffold material. J. Mater. Sci. Technol. 25:123–129, 2009.Google Scholar
  8. 8.
    Glasser, H., and G. Fuhr. Cultivation of cells under strong ac-electric field—differentiation between heating and trans-membrane potential effects. Bioelectrochem. Bioenerg. 47:301–310, 1998.CrossRefGoogle Scholar
  9. 9.
    Grace, L. H. Y., and T. Y. Wah. Effect of collagen gel structure on fibroblast phenotype. J. Emerg. Invest. 2012.
  10. 10.
    Gu, X., W. Zheng, Y. Cheng, and Y. Zheng. A study on alkaline heat treated Mg–Ca alloy for the control of the biocorrosion rate. Acta Biomater. 5:2790–2799, 2009.PubMedCrossRefGoogle Scholar
  11. 11.
    Hornberger, H., S. Virtanen, and A. Boccaccini. Biomedical coatings on magnesium alloys—a review. Acta Biomater. 8:2442–2455, 2012.PubMedCrossRefGoogle Scholar
  12. 12.
    Kharaziha, M., and M. Fathi. Synthesis and characterization of bioactive forsterite nanopowder. Ceram. Int. 35:2449–2454, 2009.CrossRefGoogle Scholar
  13. 13.
    Kokubo, T., and H. Takadama. How useful is SBF in predicting in vivo bone bioactivity? Biomaterials 27:2907–2915, 2006.PubMedCrossRefGoogle Scholar
  14. 14.
    Kumari, T., U. Vasudev, A. Kumar, and B. Menon. Cell surface interactions in the study of biocompatibility. Trends Biomater. Artif. Organs 15:37–41, 2002.Google Scholar
  15. 15.
    Lee, K., M. Park, H. Kim, Y. Lim, H. Chun, H. Kim, et al. Ceramic bioactivity: progresses, challenges and perspectives. Biomed. Mater. 1:R31, 2006.PubMedCrossRefGoogle Scholar
  16. 16.
    Li, Z., X. Gu, S. Lou, and Y. Zheng. The development of binary Mg–Ca alloys for use as biodegradable materials within bone. Biomaterials 29:1329–1344, 2008.PubMedCrossRefGoogle Scholar
  17. 17.
    Lu, L., C. Lim, and W. Yeong. Effect of reinforcements on strength of Mg9% Al composites. Compos. Struct. 66:41–45, 2004.CrossRefGoogle Scholar
  18. 18.
    Mozafari, M., M. Mehrayin, D. Vashaee, and L. Tayebi. Electroconductive nanocomposite scaffolds: a new strategy into tissue engineering and regenerative medicine, Nanocomposites—New Trends and Developments. InTech, 2012 (ISBN 978-953-51-0762-0).Google Scholar
  19. 19.
    Nagels, J., M. Stokdijk, and P. M. Rozing. Stress shielding and bone resorption in shoulder arthroplasty. J. Shoulder Elbow Surg. 12:35–39, 2003.PubMedCrossRefGoogle Scholar
  20. 20.
    Niinomi, M. Recent metallic materials for biomedical applications. Metall. Mater. Trans. A 33:477–486, 2002.CrossRefGoogle Scholar
  21. 21.
    Razavi, M., M. Fathi, and M. Meratian. Microstructure, mechanical properties and bio-corrosion evaluation of biodegradable AZ91-FA nanocomposites for biomedical applications. Mater. Sci. Eng. A 527:6938–6944, 2010.CrossRefGoogle Scholar
  22. 22.
    Razavi, M., M. Fathi, and M. Meratian. Fabrication and characterization of magnesium–fluorapatite nanocomposite for biomedical applications. Mater. Charact. 61:1363–1370, 2010.CrossRefGoogle Scholar
  23. 23.
    Razavi, M., M. Fathi, and M. Meratian. Bio-corrosion behavior of magnesium-fluorapatite nanocomposite for biomedical applications. Mater. Lett. 64:2487–2490, 2010.CrossRefGoogle Scholar
  24. 24.
    Razavi, M., M. Fathi, O. Savabi, and M. Boroni. A review of degradation properties of Mg based biodegradable implants. Res. Rev. Mater. Sci. Chem. 1:15–58, 2012.Google Scholar
  25. 25.
    Razavi, M., M. Fathi, O. Savabi, B. H. Beni, D. Vashaee, and L. Tayebi. Surface microstructure and in vitro analysis of nanostructured akermanite (Ca2MgSi2O7) Coating on biodegradable magnesium alloy for biomedical applications. Colloids Surf. B 117:432–440, 2014.CrossRefGoogle Scholar
  26. 26.
    Razavi, M., M. Fathi, O. Savab, S. MohammadRazavi, B. HashemiBeni, D. Vashaee, et al. Controlling the degradation rate of bioactive magnesium implants by electrophoretic deposition of akermanite coating. Ceram. Int. 40:3865–3872, 2014.CrossRefGoogle Scholar
  27. 27.
    Razavi, M., M. H. Fathi, O. Savabi, D. Vashaee, and L. Tayebi. Biodegradation, bioactivity and in vivo biocompatibility analysis of plasma electrolytic oxidized (PEO) biodegradable Mg implants. Phys. Sci. Int. J. 4:708–722, 2014.CrossRefGoogle Scholar
  28. 28.
    Razavi, M., M. Fathi, O. Savabi, D. Vashaee, and L. Tayebi. In vitro evaluations of anodic spark deposited AZ91 alloy as biodegradable metallic orthopedic implant. Ann. Res. Rev. Biol. 4:3716–3733, 2014.Google Scholar
  29. 29.
    Rouhani, P., E. Salahinejad, R. Kaul, D. Vashaee, and L. Tayebi. Nanostructured zirconium titanate fibers prepared by particulate sol–gel and cellulose templating techniques. J. Alloys Compd. 568:102–105, 2013.CrossRefGoogle Scholar
  30. 30.
    Salahinejad, E., M. J. Hadianfard, D. D. Macdonald, S. Sharifi-Asl, M. Mozafari, K. J. Walker, et al. In vitro electrochemical corrosion and cell viability studies on nickel-free stainless steel orthopedic implants. PloS ONE 8:e61633, 2013.PubMedCentralPubMedCrossRefGoogle Scholar
  31. 31.
    Shahini, A., M. Yazdimamaghani, K. J. Walker, M. A. Eastman, H. Hatami-Marbini, B. J. Smith, et al. 3D conductive nanocomposite scaffold for bone tissue engineering. Int. J. Nanomed. 9:167, 2014.Google Scholar
  32. 32.
    Song, G. Control of biodegradation of biocompatable magnesium alloys. Corros. Sci. 49:1696–1701, 2007.CrossRefGoogle Scholar
  33. 33.
    Song, G., A. Atrens, X. Wu, and B. Zhang. Corrosion behaviour of AZ21, AZ501 and AZ91 in sodium chloride. Corros. Sci. 40:1769–1791, 1998.CrossRefGoogle Scholar
  34. 34.
    Song, G., A. L. Bowles, and D. H. StJohn. Corrosion resistance of aged die cast magnesium alloy AZ91D. Mater. Sci. Eng. A 366:74–86, 2004.CrossRefGoogle Scholar
  35. 35.
    Song, Y., D. Shan, and E. Han. Electrodeposition of hydroxyapatite coating on AZ91D magnesium alloy for biomaterial application. Mater. Lett. 62:3276–3279, 2008.CrossRefGoogle Scholar
  36. 36.
    Staiger, M. P., A. M. Pietak, J. Huadmai, and G. Dias. Magnesium and its alloys as orthopedic biomaterials: a review. Biomaterials 27:1728–1734, 2006.PubMedCrossRefGoogle Scholar
  37. 37.
    Tavangarian, F., and R. Emadi. Mechanism of nanostructure bredigite formation by mechanical activation with thermal treatment. Mater. Lett. 65:2354–2356, 2011.CrossRefGoogle Scholar
  38. 38.
    Udhayan, R., and D. P. Bhatt. On the corrosion behaviour of magnesium and its alloys using electrochemical techniques. J. Power Sour. 63:103–107, 1996.CrossRefGoogle Scholar
  39. 39.
    Williamson, G., and W. Hall. X-ray line broadening from filed aluminium and wolfram. Acta Metall. 1:22–31, 1953.CrossRefGoogle Scholar
  40. 40.
    Wong, H. M., K. W. Yeung, K. O. Lam, V. Tam, P. K. Chu, K. D. Luk, et al. A biodegradable polymer-based coating to control the performance of magnesium alloy orthopaedic implants. Biomaterials 31:2084–2096, 2010.PubMedCrossRefGoogle Scholar
  41. 41.
    Wu, C., J. Chang, J. Wang, S. Ni, and W. Zhai. Preparation and characteristics of a calcium magnesium silicate (bredigite) bioactive ceramic. Biomaterials 26:2925–2931, 2005.PubMedCrossRefGoogle Scholar
  42. 42.
    Wu, C., J. Chang, W. Zhai, and S. Ni. A novel bioactive porous bredigite (Ca7MgSi4O16) scaffold with biomimetic apatite layer for bone tissue engineering. J. Mater. Sci. 18:857–864, 2007.Google Scholar
  43. 43.
    Xu, S., K. Lin, Z. Wang, J. Chang, L. Wang, J. Lu, et al. Reconstruction of calvarial defect of rabbits using porous calcium silicate bioactive ceramics. Biomaterials 29:2588–2596, 2008.PubMedCrossRefGoogle Scholar
  44. 44.
    Xu, J., F. Liu, F. Wang, D. Yu, and L. Zhao. The corrosion resistance behavior of Al2O3 coating prepared on NiTi alloy by micro-arc oxidation. J. Alloy. Compd. 472:276–280, 2009.CrossRefGoogle Scholar
  45. 45.
    Yang, L., and E. Zhang. Biocorrosion behavior of magnesium alloy in different simulated fluids for biomedical application. Mater. Sci. Eng. C 29:1691–1696, 2009.CrossRefGoogle Scholar
  46. 46.
    Yazdimamaghani, M., D. Vashaee, S. Assefa, K. Walker, S. Madihally, G. Köhler, et al. Hybrid macroporous gelatin/bioactive-glass/nanosilver scaffolds with controlled degradation behavior and antimicrobial activity for bone tissue engineering. J. Biomed. Nanotechnol. 10:911–931, 2014.PubMedCrossRefGoogle Scholar
  47. 47.
    Yazdimamaghani, M., M. Razavi, D. Vashaee, and L. Tayebi. Development and degradation behavior of magnesium scaffolds coated with polycaprolactone for bone tissue engineering. Mater. Lett. 132:106–110, 2014.Google Scholar
  48. 48.
    Yazdimamaghani, M., M. Razavi, D. Vashaee, and L. Tayebi. Microstructural and mechanical study of PCL coated Mg scaffolds. Surf. Eng. 2014. doi: 10.1179/1743294414Y.0000000307.
  49. 49.
    Zhang, Y., C. Yan, F. Wang, and W. Li. Electrochemical behavior of anodized Mg alloy AZ91D in chloride containing aqueous solution. Corros. Sci. 47:2816–2831, 2005.CrossRefGoogle Scholar
  50. 50.
    Zhitomirsky, I. Cathodic electrodeposition of ceramic and organoceramic materials. Fundamental aspects. Adv. Colloid Interface Sci. 97:279–317, 2002.PubMedCrossRefGoogle Scholar

Copyright information

© Biomedical Engineering Society 2014

Authors and Affiliations

  • Mehdi Razavi
    • 1
    • 3
    • 4
    • 5
  • Mohammadhossein Fathi
    • 1
    • 2
  • Omid Savabi
    • 3
  • Daryoosh Vashaee
    • 5
  • Lobat Tayebi
    • 4
    • 6
    Email author
  1. 1.Biomaterials Research Group, Department of Materials EngineeringIsfahan University of TechnologyIsfahanIran
  2. 2.Dental Materials Research CenterIsfahan University of Medical SciencesIsfahanIran
  3. 3.Torabinejad Dental Research Center, School of DentistryIsfahan University of Medical SciencesIsfahanIran
  4. 4.School of Materials Science and Engineering, Helmerich Advanced Technology Research CenterOklahoma State UniversityTulsaUSA
  5. 5.School of Electrical and Computer Engineering, Helmerich Advanced Technology Research CenterOklahoma State UniversityTulsaUSA
  6. 6.School of Chemical EngineeringOklahoma State UniversityStillwaterUSA

Personalised recommendations