Skip to main content
Log in

Towards the Feasibility of Using Ultrasound to Determine Mechanical Properties of Tissues in a Bioreactor

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Our ultimate goal is to non-destructively evaluate mechanical properties of tissue-engineered (TE) cartilage using ultrasound (US). We used agarose gels as surrogates for TE cartilage. Previously, we showed that mechanical properties measured using conventional methods were related to those measured using US, which suggested a way to non-destructively predict mechanical properties of samples with known volume fractions. In this study, we sought to determine whether the mechanical properties of samples, with unknown volume fractions could be predicted by US. Aggregate moduli were calculated for hydrogels as a function of SOS, based on concentration and density using a poroelastic model. The data were used to train a statistical model, which we then used to predict volume fractions and mechanical properties of unknown samples. Young’s and storage moduli were measured mechanically. The statistical model generally predicted the Young’s moduli in compression to within <10% of their mechanically measured value. We defined positive linear correlations between the aggregate modulus predicted from US and both the storage and Young’s moduli determined from mechanical tests. Mechanical properties of hydrogels with unknown volume fractions can be predicted successfully from US measurements. This method has the potential to predict mechanical properties of TE cartilage non-destructively in a bioreactor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Bilaniuk, N., and G. S. K. Wong. Speed of sound in pure water as a function of temperature. J. Acoust. Soc. Am. 93(3):1609–1612, 1993.

    Article  Google Scholar 

  2. Bursać, P. M., T. W. Obitz, S. R. Eisenberg, and D. Stamenović. Confined and unconfined stress relaxation of cartilage: appropriateness of a transversely isotropic analysis. J. Biomech. 32(10):1125–1130, 1999.

    Article  PubMed  Google Scholar 

  3. de Boer, R., W. Ehlers, and Z. Liu. One-dimensional transient wave propagation in fluid saturated incompressible porous media. Arch. Appl. Mech. 63:59–72, 1993.

    Article  Google Scholar 

  4. Del Grosso, V. A., and C. W. Mader. Speed of sound in pure water. J. Acoust. Soc. Am. 52(5 (Part 2)):1442–1446, 1972.

    Article  Google Scholar 

  5. Duda, G. N., A. Kliche, R. Kleemann, J. E. Hoffmann, M. Sittinger, and A. Haisch. Does low-intensity pulsed ultrasound stimulate maturation of tissue-engineered cartilage? J. Biomed. Mater. Res. B 68(1):21–28, 2004.

    Article  Google Scholar 

  6. Egle, D. M., and D. E. Bray. Measurement of acoustoelastic and third-order elastic constants for rail steel. J. Acoust. Soc. Am. 60(3):741–744, 1976.

    Article  Google Scholar 

  7. Graybill, F. Theory and Application of the Linear Model. North Scituate, MA: Duxbury Press, 1976.

    Google Scholar 

  8. Hasanova, G. I., S. E. Noriega, T. G. Mamedov, S. Guha Thakurta, J. A. Turner, and A. Subramanian. The effect of ultrasound stimulation on the gene and protein expression of chondrocytes seeded in chitosan scaffolds. J. Tissue Eng. Regen. Med. 5(10):815–822, 2011.

    Article  CAS  PubMed  Google Scholar 

  9. Hattori, K., Y. Takakura, H. Ohgushi, T. Habata, K. Uematsu, and K. Ikeuchi. Novel ultrasonic evaluation of tissue-engineered cartilage for large osteochondral defects–non-invasive judgment of tissue-engineered cartilage. J. Orthop. Res. 23(5):1179–1183, 2005.

    Article  PubMed  Google Scholar 

  10. Hughes, D. E., and J. L. Kelly. Second-order elastic constants. Phys. Rev. 92(5):1145–1149, 1953.

    Article  Google Scholar 

  11. Johnson, E. M., D. A. Berk, R. K. Jain, and W. M. Deen. Diffusion and partitioning of proteins in charged agarose gels. Biophys. J. 68(4):1561–1568, 1995.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Li, L. P., M. D. Buschmann, and A. Shirazi-Adl. A fibril reinforced nonhomogeneous poroelastic model for articular cartilage: inhomogeneous response in unconfined compression. J. Biomech. 33(12):1533–1541, 2000.

    Article  CAS  PubMed  Google Scholar 

  13. Lötjönen, P., P. Julkunen, J. Töyräs, M. J. Lammi, J. S. Jurvelin, and H. J. Nieminen. Strain-dependent modulation of ultrasound speed in articular cartilage under dynamic compression. Ultrasound Med. Biol. 35(7):1177–1184, 2009.

    Article  PubMed  Google Scholar 

  14. Louw, T. M., G. Budhiraja, H. J. Viljoen, and A. Subramanian. Mechanotransduction of ultrasound is frequency dependent below the cavitation threshold. Ultrasound Med. Biol. 39(7):1303–1319, 2013.

    Article  PubMed Central  PubMed  Google Scholar 

  15. Lu, X. L., D. D. Sun, X. E. Guo, F. H. Chen, W. M. Lai, and V. C. Mow. Indentation determined mechanoelectrochemical properties and fixed charge density of articular cartilage. Ann. Biomed. Eng. 32(3):370–379, 2004.

    Article  PubMed  Google Scholar 

  16. Ma, P. X., and R. Langer. Morphology and mechanical function of long-term in vitro engineered cartilage. J. Biomed. Mater. Res. 44(2):217–221, 1999.

    Article  CAS  PubMed  Google Scholar 

  17. Mak, A. F., W. M. Lai, and V. C. Mow. Biphasic indentation of articular cartilage–I. Theoretical analysis. J. Biomech. 20(7):703–714, 1987.

    Article  CAS  PubMed  Google Scholar 

  18. Mollon, B., R. Kandel, J. Chahal, and J. Theodoropoulos. The clinical status of cartilage tissue regeneration in humans. Osteoarthr. Cart. 21(12):1824–1833, 2013.

    Article  CAS  Google Scholar 

  19. Mow, V. C., M. C. Gibbs, W. M. Lai, W. B. Zhu, and K. A. Athanasiou. Biphasic indentation of articular cartilage–II. A numerical algorithm and an experimental study. J. Biomech. 22(8–9):853–861, 1989.

    Article  CAS  PubMed  Google Scholar 

  20. Nieminen, H. J., P. Julkunen, J. Töyräs, and J. S. Jurvelin. Ultrasound speed in articular cartilage under mechanical compression. Ultrasound Med. Biol. 33(11):1755–1766, 2007.

    Article  PubMed  Google Scholar 

  21. Noriega, S., G. Hasanova, and A. Subramanian. The effect of ultrasound stimulation on the cytoskeletal organization of chondrocytes seeded in three-dimensional matrices. Cells Tissues Organs 197(1):14–26, 2013.

    Article  PubMed Central  PubMed  Google Scholar 

  22. Noriega, S., T. Mamedov, J. A. Turner, and A. Subramanian. Intermittent applications of continuous ultrasound on the viability, proliferation, morphology, and matrix production of chondrocytes in 3D matrices. Tissue Eng. 13(3):611–618, 2007.

    Article  CAS  PubMed  Google Scholar 

  23. Roth, V., and V. C. Mow. The intrinsic tensile behavior of the matrix of bovine articular cartilage and its variation with age. J. Bone Jt. Surg. (Am.) 62(7):1102–1117, 1980.

    CAS  Google Scholar 

  24. Saarakkala, S., M. S. Laasanen, J. S. Jurvelin, K. Törrönen, M. J. Lammi, R. Lappalainen, and J. Töyräs. Ultrasound indentation of normal and spontaneously degenerated bovine articular cartilage. Osteoarthr. Cart. 11(9):697–705, 2003.

    Article  CAS  Google Scholar 

  25. Sarvazyan, A., A. Tatarinov, and N. Sarvazyan. Ultrasonic assessment of tissue hydration status. Ultrasonics 43(8):661–671, 2005.

    Article  PubMed  Google Scholar 

  26. Setton, L. A., D. M. Elliott, and V. C. Mow. Altered mechanics of cartilage with osteoarthritis: human osteoarthritis and an experimental model of joint degeneration. Osteoarthr. Cart. 7(1):2–14, 1999.

    Article  CAS  Google Scholar 

  27. Walker, J. M., A. M. Myers, M. D. Schluchter, V. M. Goldberg, A. I. Caplan, J. A. Berilla, J. M. Mansour, and J. F. Welter. Nondestructive evaluation of hydrogel mechanical properties using ultrasound. Ann. Biomed. Eng. 39(10):2521–2530, 2011.

    Article  PubMed Central  PubMed  Google Scholar 

  28. Wang, C. C., C. T. Hung, and V. C. Mow. An analysis of the effects of depth-dependent aggregate modulus on articular cartilage stress-relaxation behavior in compression. J. Biomech. 34(1):75–84, 2001.

    Article  CAS  PubMed  Google Scholar 

  29. Welter, J. F., L. A. Solchaga, J. A. Berilla, and K. Penick. Apparatus and method for tissue engineering. US Patent # 8,507,266 issued August 13, 2013.

  30. Whitney, N. P., A. C. Lamb, T. M. Louw, and A. Subramanian. Integrin-mediated mechanotransduction pathway of low-intensity continuous ultrasound in human chondrocytes. Ultrasound Med. Biol. 38(10):1734–1743, 2012.

    Article  PubMed Central  PubMed  Google Scholar 

  31. Wu, M. S., and H. O. K. Kirchner. Nonlinear elasticity modeling of biogels. J. Mech. Phys. Solids 58:300–310, 2010.

    Article  CAS  Google Scholar 

  32. Zheng, Y. P., A. F. T. Mak, K. P. Lau, and L. Qin. An ultrasonic measurement for in vitro depth-dependent equilibrium strains of articular cartilage in compression. Phys. Med. Biol. 47(17):3165–3180, 2002.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Research reported in this publication was supported by the National Institute of Arthritis and Musculoskeletal and Skin Diseases of the National Institutes of Health under Awards Number P01 AR053622 (JMM, JFW, MDS) and AR050208 (JFW). The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health. Mr. Joseph Heebner was the recipient of an ENGAGE fellowship. Funding for ENGAGE 2013 came from the National Center for Regenerative Medicine (www.ncrm.us) and proceeds from MSC 2011 conference (www.mscconference.net). Mr. Jake Althans and Ms. Sarah Abdalian were supported by the Gilmour Academy Catalyst program.

Conflict of interest

The authors have no financial relationships that may cause a conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joseph M. Mansour.

Additional information

Associate Editor Sean S. Kohles oversaw the review of this article.

Di-Win Marine Gu, Chen-Yuan Chung and Joseph Heebner have contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 218 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mansour, J.M., Gu, DW.M., Chung, CY. et al. Towards the Feasibility of Using Ultrasound to Determine Mechanical Properties of Tissues in a Bioreactor. Ann Biomed Eng 42, 2190–2202 (2014). https://doi.org/10.1007/s10439-014-1079-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-014-1079-4

Keywords

Navigation