Skip to main content
Log in

Capacitive Measurement of ECG for Ubiquitous Healthcare

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

The technology for measuring ECG using capacitive electrodes and its applications are reviewed. Capacitive electrodes are built with a high-input-impedance preamplifier and a shield on their rear side. Guarding and driving ground are used to reduce noise. An analysis of the intrinsic noise shows that the thermal noise caused by the resistance in the preamplifier is the dominant factor of the intrinsic noise. A fully non-contact capacitive measurement has been developed using capacitive grounding and applied to a non-intrusive ECG measurement in daily life. Many ongoing studies are examining how to enhance the quality and ease of applying electrodes, thus extending their applications in ubiquitous healthcare from attached-on-object measurements to wearable or EEG measurements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

Similar content being viewed by others

References

  1. Alizadeh-Taheri, B., R. L. Smith, and R. T. Knight. An active, microfabricated, scalp electrode array for EEG recording. Sens. Actuators A 54:606–611, 1996.

    Article  CAS  Google Scholar 

  2. Baek, H. J., H. S. Kim, J. Heo, Y. G. Lim, and K. S. Park. Brain–computer interfaces using capacitive measurement of visual or auditory steady-state responses. J. Neural Eng. 10:24001, 2013.

    Article  Google Scholar 

  3. Baek, H. J., J. S. Kim, K. K. Kim, and K. S. Park. System for unconstrained ECG measurement on a toilet seat using capacitive coupled electrodes: the efficacy and practicality. In: 30th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2008 (EMBS 2008), 2008, pp. 2326–2328.

  4. Baek, H. J., H. B. Lee, J. S. Kim, J. M. Choi, K. K. Kim, and K. S. Park. Nonintrusive biological signal monitoring in a car to evaluate a driver’s stress and health state. Telemed. e-Health 15:182–189, 2009.

    Article  Google Scholar 

  5. Baek, H. J., H. J. Lee, Y. G. Lim, and K. S. Park. Comparison of pre-amplifier topologies for use in brain-computer interface with capacitively-coupled EEG electrodes. Biomed. Eng. Lett. 3:158–169, 2013.

  6. Chi, Y. M., and G. Cauwenberghs. Micropower non-contact EEG electrode with active common-mode noise suppression and input capacitance cancellation. In: Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2009 (EMBS 2009), 2009, pp. 4218–4221.

  7. Chi, Y. M., and G. Cauwenberghs. Wireless non-contact EEG/ECG electrodes for body sensor networks. In: 2010 International Conference on Body Sensor Networks (BSN), 2010, pp. 297–301.

  8. Chi, Y. M., T.-P. Jung, and G. Cauwenberghs. Dry-contact and noncontact biopotential electrodes: methodological review. Biomed. Eng. IEEE Rev. 3:106–119, 2010.

    Article  Google Scholar 

  9. Chi, Y. M., C. Maier, and G. Cauwenberghs. Integrated ultra-high impedance front-end for non-contact biopotential sensing. In: IEEE Biomedical Circuits and Systems Conference, 2011 (BioCAS 2011), 2011, pp. 456–459.

  10. Chi, Y. M., Y.-T. Wang, Y. Wang, C. Maier, T.-P. Jung, and G. Cauwenberghs. Dry and noncontact EEG sensors for mobile brain–computer interfaces. Neural Syst. Rehabil. Eng. IEEE Trans. 20:228–235, 2012.

    Article  Google Scholar 

  11. Curtis, H. L. Shielding and guarding electrical apparatus used in measurements-general principles. Am. Inst. Electr. Eng. Trans. 48:1263–1269, 1929.

    Article  Google Scholar 

  12. David, R. M., and W. M. Portnoy. Insulated electrocardiogram electrodes. Med. Biol. Eng. 10:742–751, 1972.

    Article  PubMed  CAS  Google Scholar 

  13. Eilebrecht, B., T. Wartzek, J. Willkomm, A. Schommartz, M. Walter, and S. Leonhardt. Motion artifact removal from capacitive ECG measurements by means of adaptive filtering. In: 5th European Conference of the International Federation for Medical and Biological Engineering, edited by Á. Jobbágy. Berlin: Springer, 2012, pp. 902–905.

  14. Feddes, B., L. Gourmelon, M. Meftah, and T. Ikkink. Reducing motion artefacts of capacitive sensors. In: 29th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2007 (EMBS 2007), 2007, p. 1532.

  15. Fonseca, C., J. P. S. Cunha, R. E. Martins, V. M. Ferreira, J. P. M. de Sá, M. A. Barbosa, and A. M. da Silva. A novel dry active electrode for EEG recording. Biomed. Eng. IEEE Trans. 54:162–165, 2007.

    Article  CAS  Google Scholar 

  16. Gargiulo, G., P. Bifulco, R. A. Calvo, M. Cesarelli, C. Jin, and A. van Schaik. A mobile EEG system with dry electrodes. In: IEEE Biomedical Circuits and Systems Conference, 2008 (BioCAS 2008), 2008, pp. 273–276.

  17. Griffith, M. E., W. M. Portnoy, L. J. Stotts, and J. L. Day. Improved capacitive electrocardiogram electrodes for burn applications. Med. Biol. Eng. Comput. 17:641–646, 1979.

    Article  PubMed  CAS  Google Scholar 

  18. Grozea, C., C. D. Voinescu, and S. Fazli. Bristle-sensors—low-cost flexible passive dry EEG electrodes for neurofeedback and BCI applications. J. Neural Eng. 8:25008, 2011.

    Article  Google Scholar 

  19. Guger, C., G. Krausz, B. Z. Allison, and G. Edlinger. Comparison of dry and gel based electrodes for P300 brain–computer interfaces. Front. Neurosci. 6:60, 2012.

    PubMed  PubMed Central  Google Scholar 

  20. Harland, C. J., T. D. Clark, and R. J. Prance. Electric potential probes-new directions in the remote sensing of the human body. Meas. Sci. Technol. 13:163, 2002.

    Article  CAS  Google Scholar 

  21. Harland, C. J., T. D. Clark, and R. J. Prance. Remote detection of human electroencephalograms using ultrahigh input impedance electric potential sensors. Appl. Phys. Lett. 81:3284–3286, 2002.

    Article  CAS  Google Scholar 

  22. Ishijima, M. Monitoring of electrocardiograms in bed without utilizing body surface electrodes. Biomed. Eng. IEEE Trans. 40:593–594, 1993.

    Article  CAS  Google Scholar 

  23. Kim, J. H., H. J. Baek, Y. G. Lim, and K. S. Park. A performance comparison of dry-foam type capacitively-coupled EEG electrodes depending on the contact area. In: 46th Conference of Korean Society of Medical & Biological Engineering, Korea, 2012, pp. 517–518.

  24. Kim, K. K., Y. J. Chee, Y. G. Lim, J. W. Choi, and K. S. Park. A new method for unconstrained pulse arrival time (PAT) measurement on a chair. J. Biomed. Eng. Res. 27:83–88, 2006.

    Google Scholar 

  25. Kim, K. K., Y. K. Lim, and K. S. Park. Common mode noise cancellation for electrically non-contact ECG measurement system on a chair. In: 27th Annual International Conference of the Engineering in Medicine and Biology Society, 2005 (IEEE-EMBS 2005), 2006, pp. 5881–5883.

  26. Kim, J., J. Park, K. Kim, Y. Chee, Y. Lim, and K. Park. Development of a nonintrusive blood pressure estimation system for computer users. Telemed. e-Health 13:57–64, 2007.

    Article  Google Scholar 

  27. Lagow, C. H., K. J. Sladek, and P. C. Richardson. Anodic insulated tantalum oxide electrocardiograph electrodes. Biomed. Eng. IEEE Trans. 18:162–164, 1971.

    Article  CAS  Google Scholar 

  28. Lee, S. M., K. S. Sim, K. K. Kim, Y. G. Lim, and K. S. Park. Thin and flexible active electrodes with shield for capacitive electrocardiogram measurement. Med. Biol. Eng. Comput. 48:447–457, 2010.

    Article  PubMed  Google Scholar 

  29. Lim, Y. G., K. H. Hong, K. K. Kim, J. H. Shin, S. M. Lee, G. S. Chung, H. J. Baek, D.-U. Jeong, and K. S. Park. Monitoring physiological signals using nonintrusive sensors installed in daily life equipment. Biomed. Eng. Lett. 1:11–20, 2011.

    Article  Google Scholar 

  30. Lim, Y. G., K. K. Kim, and S. Park. ECG measurement on a chair without conductive contact. Biomed. Eng. IEEE Trans. 53:956–959, 2006.

    Article  Google Scholar 

  31. Lim, Y. G., K. K. Kim, and K. S. Park. ECG recording on a bed during sleep without direct skin-contact. Biomed. Eng. IEEE Trans. 54:718–725, 2007.

    Article  Google Scholar 

  32. Lopez, A., and P. C. Richardson. Capacitive electrocardiographic and bioelectric electrodes. Biomed. Eng. IEEE Trans. 16:99, 1969.

    Article  Google Scholar 

  33. Maruyama, T., M. Makikawa, N. Shiozawa, and Y. Fujiwara. ECG measurement using capacitive coupling electrodes for man-machine emotional communication. In: IEEE/ICME International Conference on Complex Medical Engineering, 2007 (CME 2007), 2007, pp. 378–383.

  34. Matsuo, T., K. Iinuma, and M. Esashi. A barium-titanate-ceramics capacitive-type EEG electrode. Biomed. Eng. IEEE Trans. 188:299–300, 1973.

    Article  Google Scholar 

  35. Matteucci, M., R. Carabalona, M. Casella, E. Di Fabrizio, F. Gramatica, M. Di Rienzo, E. Snidero, L. Gavioli, and M. Sancrotti. Micropatterned dry electrodes for brain–computer interface. Microelectron. Eng. 84:1737–1740, 2007.

    Article  CAS  Google Scholar 

  36. Oehler, M., P. Neumann, M. Becker, G. Curio, and M. Schilling. Extraction of SSVEP signals of a capacitive EEG helmet for human machine interface. In: 30th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2008 (EMBS 2008), 2008, pp. 4495–4498.

  37. Ott, H. W. Noise reduction techniques in electronic systems. New York: Wiley, 1988.

    Google Scholar 

  38. Ottenbacher, J., and S. Heuer. Motion artefacts in capacitively coupled ECG electrodes. In: World Congress on Medical Physics and Biomedical Engineering, September 7–12, 2009, Munich, Germany, 2010, pp. 1059–1062.

  39. Pallas-Areny, R. Interference-rejection characteristics of biopotential amplifiers: a comparative analysis. Biomed. Eng. IEEE Trans. 35:953–959, 1988.

    Article  CAS  Google Scholar 

  40. Peng, G., M. Sterling, and M. Bocko. Non-contact, capacitive biosensor electrodes for electrostatic charge reduction. In: 2013 IEEE Sensors, 2013, pp. 1–4.

  41. Prance, R. J., A. Debray, T. D. Clark, H. Prance, M. Nock, C. J. Harland, and A. J. Clippingdale. An ultra-low-noise electrical-potential probe for human-body scanning. Meas. Sci. Technol. 11:291, 2000.

    Article  CAS  Google Scholar 

  42. Schalk, G., D. J. McFarland, T. Hinterberger, N. Birbaumer, and J. R. Wolpaw. BCI2000: a general-purpose brain-computer interface (BCI) system. Biomed. Eng. IEEE Trans. 51:1034–1043, 2004.

    Article  Google Scholar 

  43. Searle, A., and L. Kirkup. A direct comparison of wet, dry and insulating bioelectric recording electrodes. Physiol. Meas. 21:271, 2000.

    Article  PubMed  CAS  Google Scholar 

  44. Shin, J. H., K. M. Lee, and K. S. Park. Non-constrained monitoring of systolic blood pressure on a weighing scale. Physiol. Meas. 30:679, 2009.

    Article  PubMed  Google Scholar 

  45. Spinelli, E., M. Haberman, P. García, and F. Guerrero. A capacitive electrode with fast recovery feature. Physiol. Meas. 33:1277, 2012.

    Article  PubMed  Google Scholar 

  46. Taheri, B. A., R. T. Knight, and R. L. Smith. A dry electrode for EEG recording. Electroencephalogr. Clin. Neurophysiol. 90:376–383, 1994.

    Article  PubMed  CAS  Google Scholar 

  47. Tamura, T., T. Togawa, M. Ogawa, and M. Yoda. Fully automated health monitoring system in the home. Med. Eng. Phys. 20:573–579, 1998.

    Article  PubMed  CAS  Google Scholar 

  48. Ueno, A., Y. Akabane, T. Kato, H. Hoshino, S. Kataoka, and Y. Ishiyama. Capacitive sensing of electrocardiographic potential through cloth from the dorsal surface of the body in a supine position: a preliminary study. Biomed. Eng. IEEE Trans. 54:759–766, 2007.

    Article  Google Scholar 

  49. Walter, M., B. Eilebrecht, T. Wartzek, and S. Leonhardt. The smart car seat: personalized monitoring of vital signs in automotive applications. Pers. Ubiquitous Comput. 15:707–715, 2011.

    Article  Google Scholar 

  50. Wartzek, T., T. Lammersen, B. Eilebrecht, M. Walter, and S. Leonhardt. Triboelectricity in capacitive biopotential measurements. Biomed. Eng. IEEE Trans. 58:1268–1277, 2011.

    Article  Google Scholar 

  51. Winter, B. B., and J. G. Webster. Reductionl of interference due to common mode voltage in biopotential amplifiers. Biomed. Eng. IEEE Trans. 30:58–62, 1983.

    Article  CAS  Google Scholar 

  52. Winter, B. B., and J. G. Webster. Driven-right-leg circuit design. Biomed. Eng. IEEE Trans. 30:62–66, 1983.

    Article  CAS  Google Scholar 

  53. Zander, T. O., M. Lehne, K. Ihme, S. Jatzev, J. Correia, C. Kothe, B. Picht, and F. Nijboer. A dry EEG-system for scientific research and brain–computer interfaces. Front. Neurosci. 5:53, 2011.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported in part by the Public Welfare & Safety Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT & Future Planning (NRF-2010-0020808) and in part by Sangji University Research Fund 2013.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kwang Suk Park.

Additional information

Associate Editor Tingrui Pan oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lim, Y.G., Lee, J.S., Lee, S.M. et al. Capacitive Measurement of ECG for Ubiquitous Healthcare. Ann Biomed Eng 42, 2218–2227 (2014). https://doi.org/10.1007/s10439-014-1069-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-014-1069-6

Keywords

Navigation