Skip to main content
Log in

Design Modifications and Computational Fluid Dynamic Analysis of an Outflow Cannula for Cardiopulmonary Bypass

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Cardiopulmonary bypass is a well-established technique during open heart surgeries. However, neurological complications due to insufficient cerebral oxygen supply occur and the severe consequences must not be neglected. Recent computational fluid dynamics (CFD) studies showed that during axillary cannulation the cerebral perfusion is strongly affected by the distance between the cannula tip and the vertebral artery branch. In this study we use two modifications of the cannula design to analyze the flow characteristics by means of CFD and experimental validation with particle image velocimetry (PIV). One approach applies a spin to the blood stream with a helical surface in the cannula cross section. Another approach uses radial bores in a constricted cannula tip to split the outflow jet. The additional helicity improves the perfusion of the cerebral vessels and suppresses the blood suction in the right vertebral artery observed with a standard cannula. The cannula with a helix throughout the entire length changes the blood flow from −124 to 32 mL/min in comparison with an unmodified design and has the lowest prediction of blood damage. Separating the blood stream does not deliver satisfying results. The PIV measurements validate the simulations and correspond with the velocity distribution as well as vortex locations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Ballyk, P. D., D. A. Steinman, and C. R. Ethier. Simulation of non-Newtonian blood flow in an end-to-end anastomosis. Biorheology 31(5):565–586, 1994.

    CAS  PubMed  Google Scholar 

  2. Bludszuweit, C. Three-dimensional numerical prediction of stress loading of blood particles in a centrifugal pump. Artif. Organs 19(7):590–596, 1995.

    Article  CAS  PubMed  Google Scholar 

  3. Brodman, R., H. Siegel, M. Lesser, and A. Frater. A comparison of flow gradients across disposable perfusion cannulae. Ann. Thorac. Surg. 39:225–233, 1985.

    Article  CAS  PubMed  Google Scholar 

  4. Caro, C., and D. Doorly. Modified cannula US5997516A—USA, 12 7, 1999.

  5. Fukuda, I., S. Osanai, M. Shirota, T. Inamura, H. Yanaoka, M. Minakawa, and K. Fukui. Computer-simulated fluid dynamics of arterial perfusion in extracorporeal circulation: from reality to virtual simulation. Int. J. Artif. Org. 32(6):362–370, 2009.

    Google Scholar 

  6. Gerdes, A., T. H. Hanke, and H. H. Sievers. Hydrodynamics of new medos aortic cannula. Perfusion 17(3):217–220, 2002.

    Article  PubMed  Google Scholar 

  7. Gerdes, A., E. Joubert-Huebner, K. Esders, and H. H. Sievers. Hydrodynamics of aortic arch vessels during perfusion through the right subclavian artery. Ann. Throc. Surg. 69(5):1425–1430, 2000.

    Article  CAS  Google Scholar 

  8. Ji, B., and A. Undar. An evaluation of the benefits of pulsatile vs. nonpulsatile perfusion during cardiopulmonary bypass procedures in pediatric and adult cardiac patients. ASAIO J. 52(4):357–361, 2006.

    Article  PubMed  Google Scholar 

  9. Kapetanakis, E. I., S. C. Stamou, M. K. Dullum, P. C. Hill, E. Halle, S. W. Boyce, A. S. Bafi, K. R. Petro, and P. J. Corso. The impact of aortic manipulation on neurologic outcomes after coronary artery bypass surgery: a risk-adjusted study. Ann. Thorac. Surg. 78(5):1564–1571, 2004.

    Article  PubMed  Google Scholar 

  10. Kaufmann, T. A., M. Hormes, L. Laumen, D. L. Timms, T. Linde, T. Schmitz-Rode, A. Moritz, O. Dzemali, and U. Steinseifer. Flow distribution during cardiopulmonary bypass in dependency on the outflow cannula positioning. Artif. Organs. 33(11):988–992, 2009.

    Article  PubMed  Google Scholar 

  11. Kaufmann, T. A., M. Hormes, L. Laumen, D. L. Timms, T. Linde, T. Schmitz-Rode, A. Moritz, O. Dzemali, and U. Steinseifer. The impact of aortic/subclavian outflow cannulation for cardiopulmonary bypass and cardiac support: a computational fluid dynamics study. Artif. Organs 33(9):727–732, 2009.

    Article  PubMed  Google Scholar 

  12. Kaufmann, T. A., M. Neidlin, M. Büsen, S. J. Sonntag, and U. Steinseifer. Implementation of intrinsic lumped parameter modeling into computational fluid dynamics studies of cardiopulmonary bypass. J. Biomech. 47(3):729–735, 2014.

    Article  PubMed  Google Scholar 

  13. Kaufmann, T. A., T. Schmitz-Rode, and U. Steinseifer. Implementation of cerebral autoregulation into computational fluid dynamics studies of cardiopulmonary bypass. Artif. Organs 36(8):754–758, 2012.

    Article  PubMed  Google Scholar 

  14. Laumen, M., T. A. Kaufmann, D. L. Timms, P. Schlanstein, S. Jansen, S. Gregory, K. Wong, T. Schmitz-Rode, and U. Steinseifer. Flow analysis of ventricular assist device inflow and outflow cannula positioning using a naturally shaped ventricle and aortic branch. Artif. Organs 34(19):798–806, 2010.

    Article  PubMed  Google Scholar 

  15. Menon, P. G., J. F. Antaki, A. Undar, and K. Pekkan. Aortic outflow cannula tip design and orientation impacts cerebral perfusion during pediatric cardiopulmonary bypass procedures. Ann. Biomed. Eng. 41:2588–2602, 2013.

    Article  PubMed  Google Scholar 

  16. Paulson, O. B., S. Strandgaard, and L. Edvinsson. Cerebral autoregulation. Cerebrovasc. Brain Metab. Rev. 2:161–192, 1990.

    CAS  PubMed  Google Scholar 

  17. Saunders Soft-Flow aortic cannula tip US2006/0253059A1—USA, 11 09, 2006.

  18. Scarborough, J. E., W. White, F. E. Derilus, J. P. Mathew, M. F. Newman, and K. P. Landolfo. Neurological outcomes after coronary artery bypass grafting with and without cardiopulmonary bypass. Semin. Thorac. Cardiovasc. Surg. 15(1):52–62, 2003.

    Article  PubMed  Google Scholar 

  19. Schell, R. M., F. H. Kern, W. J. Greeley, S. R. Schulman, P. E. Frasco, N. D. Croughwell, M. Newman, and J. G. Reves. Cerebral blood flow and metabolism during cardiopulmonary bypass. Anesth. Analg. 76(4):849–865, 1993.

    CAS  PubMed  Google Scholar 

  20. Taskin, M. E., K. H. Fraser, T. Zhang, C. Wu, B. P. Griffith, and Z. J. Wu. Evaluation of Eulerian and Lagrangian models for hemolysis estimation. ASAIO J. 58(4):363–372, 2012.

    Article  PubMed  Google Scholar 

  21. Tokuda, Y., M. H. Song, Y. Ueda, A. Usui, T. Akita, S. Yoneyama, and S. Maruyama. Three-dimensional numerical simulation of blood flow in the aortic arch during cardiopulmonary bypass. Eur. J. Cardiothorac. Surg. 33(2):164–167, 2008.

    Article  PubMed  Google Scholar 

  22. Undar, A., T. Masai, O. H. Frazier, and C. D. Fraser, Jr. Pulsatile and nonpulsatile flows can be quantified in terms of energy equivalent pressure during cardiopulmonary bypass for direct comparisons. ASAIO J. 45(6):610–614, 1999.

    Article  CAS  PubMed  Google Scholar 

  23. Zhang, T., M. E. Taskin, and H. B. Fang. Study of flow-induced hemolysis using novel Couette-type blood shearing devices. Artif. Organs 35:1071–1085, 2011.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Neidlin.

Additional information

Associate Editor Peter E. McHugh oversaw the review of this article.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 430 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Neidlin, M., Jansen, S., Moritz, A. et al. Design Modifications and Computational Fluid Dynamic Analysis of an Outflow Cannula for Cardiopulmonary Bypass. Ann Biomed Eng 42, 2048–2057 (2014). https://doi.org/10.1007/s10439-014-1064-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-014-1064-y

Keywords

Navigation