Skip to main content
Log in

Neuromuscular Complexity During Gait is not Responsive to Medication in Persons with Parkinson’s Disease

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

The purpose of this study was to investigate the effects of dopaminergic therapy on neuromuscular complexity during gait and on the relationship between neuromuscular complexity and gait speed in persons with Parkinson’s disease (PD). Nine persons with PD walked at self-selected speed for 5 min after having withdrawn from dopaminergic medication for at least 12 h and while optimally-medicated. Electromyographic recordings were taken from eight leg muscles bilaterally. Non-negative matrix factorization was applied to reduce the dimensionality of the electromyographic signals into motor modules. We assessed neuromuscular complexity by investigating the number, structure, and timing of the modules. We also investigated the influence of dopaminergic medication on the relationships between neuromuscular complexity and gait speed. Though gait speed increased significantly after medication intake, medication did not affect neuromuscular complexity. Neuromuscular complexity was significantly associated with gait speed only while the participants were medicated. Thus, the supraspinal structures that govern neuromuscular complexity during gait do not appear to be solely dopaminergically-influenced in PD. The lack of dopaminergic influence on neuromuscular complexity may explain why persons with PD exhibit gait slowness even while medicated, and an intervention that restores neuromuscular complexity may result in gait speed improvement in PD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Allen, J. L., S. A. Kautz, and R. R. Neptune. The influence of merged muscle excitation modules on post-stroke hemiparetic walking performance. Clin. Biomech. (Bristol, Avon) 28:697–704, 2013.

    Article  Google Scholar 

  2. Allen, J. L., and R. R. Neptune. Three-dimensional modular control of human walking. J. Biomech. 45:2157–2163, 2012.

    Article  PubMed Central  PubMed  Google Scholar 

  3. Amano, S., R. T. Roemmich, J. W. Skinner, and C. J. Hass. Ambulation and Parkinson disease. Phys. Med. Rehabil. Clin. N. Am. 24:371–392, 2013.

    Article  PubMed  Google Scholar 

  4. Birkmayer, W., and O. Hornykiewicz. The L-3,4-dioxyphenylalanine (DOPA)-effect in Parkinson-akinesia. Wien KlinWochenschr. 73:787–788, 1961.

    CAS  Google Scholar 

  5. Blin, O., A. M. Ferrandez, J. Pailhous, and G. Serratrice. Dopa-sensitive and dopa-resistant gait parameters in Parkinson’s disease. J. Neurol. Sci. 103:51–54, 1991.

    Article  CAS  PubMed  Google Scholar 

  6. Bohnen, N. I., K. A. Frey, S. Studenski, V. Kotagal, R. A. Koeppe, P. J. Scott, R. L. Albin, and M. L. Müller. Gait speed in Parkinson disease correlates with cholinergic degeneration. Neurology. 81:1611–1616, 2013.

    Article  CAS  PubMed  Google Scholar 

  7. Bohnen, N. I., M. L. Müller, R. A. Koeppe, S. A. Studenski, M. A. Kilbourn, K. A. Frey, and R. L. Albin. History of falls in Parkinson disease is associated with reduced cholinergic activity. Neurology. 73:1670–1676, 2009.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Cheung, V. C., A. d’Avella, M. C. Tresch, and E. Bizzi. Central and sensory contributions to the activation and organization of muscle synergies during natural motor behaviors. J. Neurosci. 25:6419–6434, 2005.

    Article  CAS  PubMed  Google Scholar 

  9. Chvatal, S. A., J. M. Macpherson, G. Torres-Oviedo, and L. H. Ting. Absence of postural muscle synergies for balance after spinal cord transection. J. Neurophysiol. 110:1301–1310, 2005.

    Article  Google Scholar 

  10. Clark, D. J., L. H. Ting, F. E. Zajac, R. R. Neptune, and S. A. Kautz. Merging of healthy motor modules predicts reduced locomotor performance and muscle coordination complexity post-stroke. J. Neurophysiol. 103:844–857, 2010.

    Article  PubMed Central  PubMed  Google Scholar 

  11. Cotzias, G. C., M. H. Van Woert, and L. M. Schiffer. Aromatic amino acids and modification of parkinsonism. N. Engl. J. Med. 276:374–379, 1967.

    Article  CAS  PubMed  Google Scholar 

  12. Dingwell, J. B., and L. C. Marin. Kinematic variability and local dynamic stability of upper body motions when walking at different speeds. J. Biomech. 39:444–452, 2006.

    Article  PubMed  Google Scholar 

  13. Ellis, T., J. T. Cavanaugh, G. M. Earhart, M. P. Ford, K. B. Foreman, and L. E. Dibble. Which measures of physical function and motor impairment best predict quality of life in Parkinson’s disease? Parkinsonism Relat. Disord. 17:693–697, 2011.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Giszter, S. F., M. R. Davies, and V. Graziani. Motor strategies used by rats spinalized at birth to maintain stance in response to imposed perturbations. J. Neurophysiol. 97:2663–2675, 2007.

    Article  PubMed Central  PubMed  Google Scholar 

  15. Grillner, S., P. Wallén, K. Saitoh, A. Kozlov, and B. Robertson. Neural bases of goal-directed locomotion in vertebrates–an overview. Brain Res. Rev. 57:2–12, 2008.

    Article  PubMed  Google Scholar 

  16. Hass, C. J., M. D. Bishop, M. Moskovich, E. L. Stegemöller, J. W. Skinner, I. A. Malaty, A. Wagle Shukla, K. N. McFarland, and M. S. Okun. Defining the clinically meaningful difference in gait speed in Parkinson’s disease. J. Neurol. Phys. Ther. (2014, accepted).

  17. Hirsch, E. C., A. M. Graybiel, C. Duyckaerts, and F. Javoy-Agid. Neuronal loss in the pedunculopontine tegmental nucleus in Parkinson disease and in progressive supranuclearpalsy. Proc. Natl Acad. Sci. U.S.A. 84:5976–5980, 1987.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Ivanenko, Y. P., G. Cappellini, N. Dominici, R. E. Poppele, and F. Lacquaniti. Coordination of locomotion with voluntary movements in humans. J. Neurosci. 25:7238–7253, 2005.

    Article  CAS  PubMed  Google Scholar 

  19. Ivanenko, Y. P., R. E. Poppele, and F. Lacquaniti. Five basic muscle activation patterns account for muscle activity during human locomotion. J. Physiol. 556:267–282, 2004.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Karachi, C., D. Grabli, F. A. Bernard, D. Tandé, N. Wattiez, H. Belaid, E. Bardinet, A. Prigent, H. P. Nothacker, S. Hunot, A. Hartmann, S. Lehéricy, E. C. Hirsch, and C. François. Cholinergic mesencephalic neurons are involved in gait and postural disorders in Parkinson disease. J. Clin. Invest. 120:2745–2754, 2010.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Knutsson, E. An analysis of Parkinsonian gait. Brain 95:475–486, 1972.

    Article  CAS  PubMed  Google Scholar 

  22. Krystkowiak, P., J. L. Blatt, J. L. Bourriez, A. Duhamel, M. Perina, S. Blond, J. D. Guieu, A. Destée, and L. Defebvre. Effects of subthalamic nucleus stimulation and levodopa treatment on gait abnormalities in Parkinson disease. Arch. Neurol. 60:80–84, 2003.

    Article  PubMed  Google Scholar 

  23. Morris, M. E., R. Iansek, T. A. Matyas, and J. J. Summers. The pathogenesis of gait hypokinesia in Parkinson’s disease. Brain. 117:1169–1181, 1994.

    Article  PubMed  Google Scholar 

  24. Müller, M. L., R. L. Albin, V. Kotagal, R. A. Koeppe, P. J. Scott, K. A. Frey, and N. I. Bohnen. Thalamic cholinergic innervation and postural sensory integration function in Parkinson’s disease. Brain. 136:3282–3289, 2013.

    Article  PubMed  Google Scholar 

  25. Neptune, R. R., D. J. Clark, and S. A. Kautz. Modular control of human walking: a simulation study. J. Biomech. 42:1282–1287, 2009.

    Article  PubMed Central  PubMed  Google Scholar 

  26. Pierantozzi, M., M. G. Palmieri, S. Galati, P. Stanzione, A. Peppe, D. Tropepi, L. Brusa, A. Pisani, V. Moschella, M. G. Marciani, P. Mazzone, and A. Stefani. Pedunculopontine nucleus deep brain stimulation changes spinal cord excitability in Parkinson’s disease patients. J. Neural Transm. 115:731–735, 2008.

    Article  PubMed  Google Scholar 

  27. Rochester, L., A. J. Yarnall, M. R. Baker, R. V. David, S. Lord, B. Galna, and D. J. Burn. Cholinergic dysfunction contributes to gait disturbance in early Parkinson’s disease. Brain. 135:2779–2788, 2012.

    Article  PubMed Central  PubMed  Google Scholar 

  28. Rodriguez, K. L., R. T. Roemmich, B. Cam, B. J. Fregly, and C. J. Hass. Persons with Parkinson’s disease exhibit decreased neuromuscular complexity during gait. Clin. Neurophysiol. 124:1390–1397, 2013.

    Article  PubMed Central  PubMed  Google Scholar 

  29. Roh, J., V. C. Cheung, and E. Bizzi. Modules in the brain stem and spinal cord underlying motor behaviors. J. Neurophysiol. 106:1363–1378, 2011.

    Article  PubMed Central  PubMed  Google Scholar 

  30. Rolland, A. S., D. Tandé, M. T. Herrero, M. R. Luquin, M. Vazquez-Claverie, C. Karachi, E. C. Hirsch, and C. François. Evidence for a dopaminergic innervation of the pedunculopontine nucleus in monkeys, and its drastic reduction after MPTP intoxication. J. Neurochem. 110:1321–1329, 2009.

    Article  CAS  PubMed  Google Scholar 

  31. Routson, R. L., D. J. Clark, M. G. Bowden, S. A. Kautz, and R. R. Neptune. The influence of locomotor rehabilitation on module quality and post-stroke hemiparetic walking performance. Gait Posture. 38:511–517, 2013.

    Article  PubMed Central  PubMed  Google Scholar 

  32. Ryczko, D., S. Grätsch, F. Auclair, C. Dubé, S. Bergeron, M. H. Alpert, J. J. Cone, M. F. Roitman, S. Alford, and R. Dubuc. Forebrain dopamine neurons project down to a brainstem region controlling locomotion. Proc. Natl Acad. Sci. U.S.A. 110:3235–3242, 2013.

    Article  Google Scholar 

  33. Shulman, L. M., A. L. Gruber-Baldini, K. E. Anderson, P. S. Fishman, S. G. Reich, and W. J. Weiner. The clinically important difference on the unified Parkinson’s disease rating scale. Arch. Neurol. 67:64–70, 2010.

    Article  PubMed  Google Scholar 

  34. Spaulding, S. J., B. Barber, M. Colby, B. Cormack, T. Mick, and M. E. Jenkins. Cueing and gait improvement among people with Parkinson’s disease: a meta-analysis. Arch. Phys. Med. Rehabil. 94(3):562–570, 2013.

    Article  PubMed  Google Scholar 

  35. Ting, L. H., and S. A. Chvatal. Decomposing muscle activity in motor tasks: methods and interpretation. In: Motor Control: Theories, Experiments, and Applications, edited by F. Danion, and M. L. Latash. Oxford: Oxford University Press, 2010, pp. 102–138.

    Chapter  Google Scholar 

  36. Ting, L. H., and J. M. Macpherson. A limited set of muscle synergies for force control during a postural task. J. Neurophysiol. 93:609–613, 2005.

    Article  PubMed  Google Scholar 

  37. Torres-Oviedo, G., J. M. Macpherson, and L. H. Ting. Muscle synergy organization is robust across a variety of postural perturbations. J. Neurophysiol. 96:1530–1546, 2006.

    Article  PubMed  Google Scholar 

  38. Tresch, M. C., V. C. Cheung, and A. d’Avella. Matrix factorization algorithms for the identification of muscle synergies: evaluation on simulated and experimental data sets. J. Neurophysiol. 95:2199–2212, 2006.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported in part by NIH grants 1R21AG033284-01A2 and UF National Parkinson’s Foundation Center of Excellence. We would also like to thank Dr. Umer Akbar and Dr. Nawaz Hack for their assistance in scoring the UPDRS videos.

Conflict of interest

The authors declare that there are no relevant conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ryan T. Roemmich.

Additional information

Associate Editor Thurmon E. Lockhart oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Roemmich, R.T., Fregly, B.J. & Hass, C.J. Neuromuscular Complexity During Gait is not Responsive to Medication in Persons with Parkinson’s Disease. Ann Biomed Eng 42, 1901–1912 (2014). https://doi.org/10.1007/s10439-014-1036-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-014-1036-2

Keywords

Navigation