Abstract
Transmural variations in the relationship between structural and fluid transport properties of myocardial capillary networks are determined via continuum modeling approaches using recent three-dimensional (3D) data on the microvascular structure. Specifically, the permeability tensor, which quantifies the inverse of the blood flow resistivity of the capillary network, is computed by volume-averaging flow solutions in synthetic networks with geometrical and topological properties derived from an anatomically-detailed microvascular data set extracted from the rat myocardium. Results show that the permeability is approximately ten times higher in the principal direction of capillary alignment (the “longitudinal” direction) than perpendicular to this direction, reflecting the strong anisotropy of the microvascular network. Additionally, a 30% increase in capillary diameter from subepicardium to subendocardium is shown to translate to a 130% transmural rise in permeability in the longitudinal capillary direction. This result supports the hypothesis that perfusion is preferentially facilitated during diastole in the subendocardial microvasculature to compensate for the severely-reduced systolic perfusion in the subendocardium.
This is a preview of subscription content, access via your institution.








References
Bassingthwaighte, J. B., T. Yipintsoi, and R. B. Harvey. Microvasculature of the dog left ventricular myocardium. Microvasc. Res. 7:229–249, 1974.
Beard, D. A., and J. B. Bassingthwaighte. Advection and diffusion of substances in biological tissues with complex vascular networks. Ann. Biomed. Eng. 28:253–268, 2000.
Chapelle, D., J.-F. Gerbeau, J. Sainte-Marie, and I. E. Vignon-Clementel. A poroelastic model valid in large strains with applications to perfusion in cardiac modeling. Comput. Mech. 46:91–101, 2010.
Chilian, W. M., S. M. Layne, E. C. Klausner, C. L. Eastham, and M. L. Marcus. Redistribution of coronary microvascular resistance produced by dipyridamole. Am. J. Physiol. Heart. Circ. Physiol. 256:H383–H390, 1989.
Cookson, A. N., J. Lee, C. Michler, R. Chabiniok, E. Hyde, D. A. Nordsletten, M. Sinclair, M. Siebes, and N. P. Smith. A novel porous mechanical framework for modelling the interaction between coronary perfusion and myocardial mechanics. J. Biomech. 45:850–855, 2012.
Fry, B. C., J. Lee, N. P. Smith, and T. W. Secomb. Estimation of blood flow rates in large microvascular networks. Microcirculation 19:530–538, 2012.
Goldman, D., and A. S. Popel. A computational study of the effect of capillary network anastomoses and tortuosity on oxygen transport. J. Theor. Biol. 206:181–194, 2000.
Goto, M., A. E. Flynn, J. W. Doucette, C. M. Jansen, M. M. Stork, D. L. Coggins, D. D. Muehrcke, W. K. Husseini, and J. I. Hoffman. Cardiac contraction affects deep myocardial vessels predominantly. Am. J. Physiol. Heart. Circ. Physiol. 261:H1417–H1429, 1991.
Hoffman, J. I. E. Transmural myocardial perfusion. Prog. Cardiovasc. Dis. 29:429–464, 1987.
Hyde, E. R., R. Chabiniok, D. A. Nordsletten, and N. P. Smith. Parameterisation of multi-scale continuum perfusion models from discrete vascular networks. Med. Biol. Eng. Comput. 51:557–570, 2013.
Hyde, E. R., A. N. Cookson, J. Lee, C. Michler, A. Goyal, T. Sochi, R. Chabiniok, M. Sinclair, D. Nordsletten, J. Spaan, J. P. van den Wijngaard, M. Siebes, and N. P. Smith. Multi-scale parameterisation of a myocardial perfusion model using whole-organ arterial networks. Ann. Biomed. Eng. 42:797–811, 2014.
Kaneko, N., R. Matsuda, M. Toda, and K. Shimamoto. Three-dimensional reconstruction of the human capillary network and the intramyocardial micronecrosis. Am. J. Physiol. Heart. Circ. Physiol. 300:H754–H761, 2011.
Kassab, G. S., and Y. C. B. Fung. Topology and dimensions of pig coronary capillary network. Am. J. Physiol. Heart. Circ. Physiol. 267:H319–H325, 1994.
Kassab, G. S., K. N. Le, and Y. C. B. Fung. A hemodynamic analysis of coronary capillary blood flow based on anatomic and distensibility data. Am. J. Physiol. Heart. Circ. Physiol. 277:H2158–H2166, 1999.
Kiyooka, T., O. Hiramatsu, F. Shigeto, H. Nakamoto, H. Tachibana, T. Yada, Y. Ogasawara, M. Kajiya, T. Morimoto, Y. Morizane, S. Mohri, J. Shimizu, T. Ohe, and F. Kajiya. Direct observation of epicardial coronary capillary hemodynamics during reactive hyperemia and during adenosine administration by intravital video microscopy. Am. J. Physiol. Heart. Circ. Physiol. 288:1437–1443, 2005.
LeGrice, I. J., B. H. Smaill, L. Z. Chai, S. G. Edgar, J. B. Gavin, and P. J. Hunter. Laminar structure of the heart: ventricular myocyte arrangement and connective tissue architecture in the dog. Am. J. Physiol. Heart. Circ. Physiol. 269:H571–H582, 1995.
Lee, J., S. Niederer, D. Nordsletten, I. LeGrice, B. Smaill, D. Kay, and N. Smith. Coupling contraction, excitation, ventricular and coronary blood flow across scale and physics in the heart. Philos. Trans. R. Soc. A 367:2311–2331, 2009.
Lorthois, S., F. Cassot, and F. Lauwers. Simulation study of brain blood flow regulation by intra-cortical arterioles in an anatomically accurate large human vascular network: Part I: methodology and baseline flow. NeuroImage 54:1031–1042, 2011.
May-Newman, K., O. Mathieu-Costello, J. H. Omens, K. Klumb, and A. D. McCulloch. Transmural distribution of capillary morphology as a function of coronary perfusion pressure in the resting canine heart. Microvasc. Res. 50:381–396, 1995.
McDonagh, P., and J. Y. Hokama. Microvascular perfusion and transport in the diabetic heart. Microcirculation. 7:163–181, 2000.
Poole, D. C., S. Batra, O. Mathieu-Costello, and K. Rakusan. Capillary geometrical changes with fiber shortening in rat myocardium. Circ. Res. 70:697–706, 1992.
Potter, R., and A. Groom. Capillary diameter and geometry in cardiac and skeletal muscle studied by means of corrosion casts. Microvasc. Res. 25:68–84, 1983.
Pries, A. R., and T. W. Secomb. Microvascular blood viscosity in vivo and the endothelial surface layer. Am. J. Physiol. Heart. Circ. Physiol. 289:H2657–H2664, 2005.
Secomb, T., R. Hsu, N. Beamer, and B. Coull. Theoretical simulation of oxygen transport to brain by networks of microvessels: effects of oxygen supply and demand on tissue hypoxia. Microcirculation. 7:237–247, 2000.
Shipley, R. J., and S. J. Chapman. Multiscale modelling of fluid and drug transport in vascular tumours. Bull. Math. Biol. 72:1464–1491, 2010.
Smith, A. F. Multi-Scale Modelling of Blood Flow in the Coronary Microcirculation. DPhil Thesis, University of Oxford, 2013.
Smith, N. P., and G. S. Kassab. Analysis of coronary blood flow interaction with myocardial mechanics based on anatomical models. Philos. Trans. R. Soc. A 359:1251–1262, 2001.
Toborg, M. The microcirculatory bed in the myocardium of the rat and the cat. Z. Zellforsch. 123:369–394, 1972.
Tomanek, R. J., J. C. Searls, and P. A. Lachenbruch. Quantitative changes in the capillary bed during developing, peak, and stabilized cardiac hypertrophy in the spontaneously hypertensive rat. Circ. Res. 51:295–304, 1982.
van de Hoef, T. P., F. Nolte, M. C Rolandi., J. J. Piek, J. P. van den Wijngaard, J. A. Spaan and M. Siebes. Coronary pressure-flow relations as basis for the understanding of coronary physiology. J. Mol. Cell. Cardiol. 52:786–793, 2012.
van den Wijngaard, J. P. J. C. Schwarz, P. van Horssen, M. G. van Lier, J. G. Dobbe, J. A. Spaan, and M. Siebes. 3D imaging of vascular networks for biophysical modeling of perfusion distribution within the heart. J. Biomech. 46:229–239, 2013.
Vinnakota, K. C., and J. B. Bassingthwaighte. Myocardial density and composition: a basis for calculating intracellular metabolite concentrations. Am. J. Physiol. Heart. Circ. Physiol. 286:1742–1749, 2004.
Waller, C., E. Kahler, K. H. Hiller, K. Hu, M. Nahrendorf, S. Voll, A. Haase, G. Ertl, and W. R. Bauer. Myocardial perfusion and intracapillary blood volume in rats at rest and with coronary dilatation: MR imaging in vivo with use of a spin-labeling technique. Radiology 215:189–197, 2000.
Wieringa, P. A., J. A. E. Spaan, H. G. Stassen, and J. D. Laird. Heterogeneous flow distribution in a three dimensional network simulation of the myocardial microcirculation—a hypothesis. Microcirculation 2:195–216, 1982.
Acknowledgments
The authors acknowledge support from the Virtual Physiological Rat Project (NIH1 P50 GM094503-1), the EPSRC (Engineering and Physical Sciences Research Council) under grant numbers EP/F043929/1 and EP/G007527/2, and Award No. KUK-C1-013-04 made by King Abdullah University of Science and Technology (KAUST). The authors would also like to thank Prof. Timothy W. Secomb (University of Arizona) for helpful scientific discussions.
Author information
Authors and Affiliations
Corresponding author
Additional information
Associate Editor Dan Elson oversaw the review of this article.
Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
About this article
Cite this article
Smith, A.F., Shipley, R.J., Lee, J. et al. Transmural Variation and Anisotropy of Microvascular Flow Conductivity in the Rat Myocardium. Ann Biomed Eng 42, 1966–1977 (2014). https://doi.org/10.1007/s10439-014-1028-2
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10439-014-1028-2