Skip to main content
Log in

Modelling the Influence of Heterogeneous Annulus Material Property Distribution on Intervertebral Disk Mechanics

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Accurate modeling of the annulus fibrosus (AF) is a crucial aspect to study spine mechanics in silico. Numerical models require validation at both the microscale and organ level to be representative of the real system. Although the AF presents distributed material properties, its response is often modeled with a homogeneous stiffness distribution. The aim of this study was to investigate the influence of different modeling approaches on the numerical response of disk models, based on lamellae mechanics. A material mapping strategy was developed to define element-wise the local annulus material properties, based on prior findings of single-lamella mechanics and collagen distribution. Three modeling approaches were compared: homogeneous, radial and radial-circumferential distribution of material properties. The simulations showed a strong influence of the chosen modeling approach on the disk’s tissue- and organ-scale mechanics. A homogeneous model with uniform, average lamellae stiffness predicted a substantially different internal stress distribution and organ-level response, compared to a model with heterogeneous material properties of the annulus lamellae. Finally, the study has indirectly highlighted that the organization of the mature disks could be a consequence of adaptation to the stresses induced by the applied loads, in order to evenly distribute the load over the entire structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

Similar content being viewed by others

References

  1. Acaroglu, E. R., J. C. Iatridis, L. A. Setton, R. J. Foster, V. C. Mow, and M. Weidenbaum. Degeneration and aging affect the tensile behavior of human lumbar anulus fibrosus. Spine 20:2690–2701, 1995.

    Article  CAS  PubMed  Google Scholar 

  2. Adams, M. A., and T. P. Green. Tensile properties of the annulus fibrosus. I. The contribution of fibre–matrix interactions to tensile stiffness and strength. Eur. Spine J. 2:203–208, 1993.

    Article  CAS  PubMed  Google Scholar 

  3. Adams, M. A., and P. J. Roughley. What is intervertebral disc degeneration, and what causes it? Spine 31:2151–2161, 2006.

    Article  PubMed  Google Scholar 

  4. Adams, P., D. R. Eyre, and H. Muir. Biochemical aspects of development and ageing of human lumbar intervertebral discs. Rheumatol. Rehabil. 16:22–29, 1977.

    Article  CAS  PubMed  Google Scholar 

  5. Aladin, D. M., K. M. Cheung, A. H. Ngan, D. Chan, V. Y. Leung, C. T. Lim, K. D. K. Luk, and W. W. Lu. Nanostructure of collagen fibrils in human nucleus pulposus and its correlation with macroscale tissue mechanics. J. Orthop. Res. 28:497–502, 2010.

    CAS  PubMed  Google Scholar 

  6. Antoniou, J., T. Steffen, F. Nelson, N. Winterbottom, A. P. Hollander, R. A. Poole, M. Aebi, and M. Alini. The human lumbar intervertebral disc. Evidence for changes in the biosynthesis and denaturation of the extracellular matrix with growth, maturation, ageing, and degeneration. J. Clin. Invest. 98:996–1003, 1996.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Brickley-Parsons, D., and M. J. Glimcher. Is the chemistry of collagen in intervertebral discs an expression of Wolff’s Law? A study of the human lumbar spine. Spine 9:148–163, 1984.

    Article  CAS  PubMed  Google Scholar 

  8. Cassidy, J. J., A. Hiltner, and E. Baer. Hierarchical structure of the intervertebral disc. Connect. Tissue Res. 23:75–88, 1989.

    Article  CAS  PubMed  Google Scholar 

  9. Cloyd, J. M., N. R. Malhotra, L. Weng, W. Chen, R. L. Mauck, and D. M. Elliott. Material properties in unconfined compression of human nucleus pulposus, injectable hyaluronic acid-based hydrogels and tissue engineering scaffolds. Eur. Spine J. 16:1892–1898, 2007.

    Article  PubMed Central  PubMed  Google Scholar 

  10. Coventry, M. B., and R. K. Ghormley. The intervertebral disc: its microscopic anatomy and pathology. Part I. Anatomy, Development, and Physiology. J. Bone Joint Surg. 27:105–112, 1945.

  11. Coventry, M. B., R. K. Ghormley, and J. W. Kernohan. The intervertebral disc: its microscopic anatomy and pathology. Part II. Changes in the intervertebral disc concomitant with age. J. Bone Joint Surg. 27:233–247, 1945.

  12. Ebara, S., J. C. Iatridis, L. A. Setton, R. J. Foster, V. C. Mow, and M. Weidenbaum. Tensile properties of nondegenerate human lumbar anulus fibrosus. Spine 21:452–461, 1996.

    Article  CAS  PubMed  Google Scholar 

  13. Elliott, D. M., and L. A. Setton. A linear material model for fiber-induced anisotropy of the anulus fibrosus. J. Biomech. Eng. 122:173–179, 2000.

    Article  CAS  PubMed  Google Scholar 

  14. Eyre, D. R., and H. Muir. Quantitative analysis of types I and II collagens in human intervertebral discs at various ages. Biochim. Biophys. Acta 492:29–42, 1977.

    Article  CAS  PubMed  Google Scholar 

  15. Ferguson, S. J., K. Ito, and L.-P. Nolte. Fluid flow and convective transport of solutes within the intervertebral disc. J. Biomech. 37:213–221, 2004.

    Article  PubMed  Google Scholar 

  16. Fujita, Y., N. A. Duncan, and J. C. Lotz. Radial tensile properties of the lumbar annulus fibrosus are site and degeneration dependent. J. Orthop. Res. 15:814–819, 1997.

    Article  CAS  PubMed  Google Scholar 

  17. Galante, J. O. Tensile properties of the human anulus fibrosus. Acta Orthop. Scand. 100[Suppl]:4–91, 1967.

  18. Gelse, K., E. Pöschl, and T. Aigner. Collagens-structure, function, and biosynthesis. Adv. Drug Deliv. Rev. 55:1531–1546, 2003.

    Article  CAS  PubMed  Google Scholar 

  19. Gu, W. Y., X. G. Mao, R. J. Foster, M. Weidenbaum, V. C. Mow, and B. A. Rawlins. The anysotropic hydraulic permeability of human lumbar anulus fibrosus. Influence of age, degeneration, direction, and water content. Spine 24:2449–2455, 1999.

    Article  CAS  PubMed  Google Scholar 

  20. Guoan, L., S. Wang, P. Passias, Q. Xia, G. Li, and K. Wood. Segmental in vivo vertebral motion during functional human lumbar spine activities. Eur. Spine J. 18:1013–1021, 2009.

    Article  Google Scholar 

  21. Han, W. M., N. L. Nerurkar, L. J. Smith, N. T. Jacobs, R. L. Mauck, and D. M. Elliott. Multi-scale structural and tensile mechanical response of annulus fibrosus to osmotic loading. Ann. Biomed. Eng. 40:1610–1621, 2012.

    Article  PubMed Central  PubMed  Google Scholar 

  22. Hassler, O. The human intervertebral disc. A micro-angiographical study on its vascular supply at various age. Acta Orthop. Scand. 40:765–772, 1970.

    Article  Google Scholar 

  23. Herbert, C. M., K. A. Lindberg, M. I. Jayson, and A. J. Bailey. Changes in the collagen of human intervertebral discs during ageing and degenerative disc disease. J. Mol. Med. 1:79–91, 1975.

    CAS  Google Scholar 

  24. Heuer, F., H. Schmidt, Z. Klezl, L. Claes, and H.-J. Wilke. Stepwise reduction of functional spinal structures increase range of motion and change lordosis angle. J. Biomech. 40:271–280, 2007.

    Article  PubMed  Google Scholar 

  25. Holzapfel, G. A., and R. W. Ogden. Mechanics of Biological Tissues. Wien: Springer, 2006, 522 pp.

  26. Holzapfel, G. A., C. A. Schulze-Bauer, G. Feigl, and P. Regitnig. Single lamellar mechanics of the human lumbar anulus fibrosus. Biomech. Model. Mech. 3:125–140, 2005.

    Article  CAS  Google Scholar 

  27. Iatridis, J. C., J. L. Laible, and M. H. Krag. Influence of fixed charge density magnitude and distribution on the intervertebral disc: applications of a poroelastic and chemical electric (PEACE) model. J. Biomech. Eng. 125:12–24, 2003.

    Article  PubMed  Google Scholar 

  28. Iatridis, J. C., J. J. MacLean, M. O’Brien, and I. A. Stokes. Measurements of proteoglycans and water content distribution in human lumbar intervertebral discs. Spine 32:1493–1497, 2007.

  29. Iatridis, J. C., M. Weidenbaum, L. A. Setton, and V. C. Mow. Is the nucleus pulposus a solid or a fluid? Mechanical behaviors of the nucleus pulposus of the human intervertebral disc. Spine 21:1174–1184, 1996.

    Article  CAS  PubMed  Google Scholar 

  30. Johannessen, W., and D. M. Elliott. Effects of degeneration on the biphasic material properties of human nucleus pulposus in confined compression. Spine 30:E724–E729, 2005.

    Article  PubMed  Google Scholar 

  31. Malandrino, A., J. Noailly, and D. Lacroix. Regional annulus fibre orientations used as a tool for the calibration of lumbar intervertebral disc finite element models. Comput. Methods Biomech. Biomed. Eng. 16:923–928, 2012.

    Article  Google Scholar 

  32. Marchand, F., and A. M. Ahmed. Investigation of the laminate structure of the lumbar disc anulus fibrosus. Spine 15:402–410, 1990.

    Article  CAS  PubMed  Google Scholar 

  33. Marini, G., and S. J. Ferguson. Nonlinear numerical analysis of the structural response of the intervertebral disc to impact loading. Comput. Methods Biomech. Online, 2012.

  34. Marini, G., H. Studer, and S. J. Ferguson. Influence of the swelling pressure in a bottom-up description of the intervertebral disc. In: 8th European Solid Mechanics Conference, Graz, Austria, 2012.

  35. Marini, G., I. Koh, H. Studer, and S. J. Ferguson. An algorithm for modeling the fibre distribution of the annulus fibrosus within arbitrarily-aligned meshes. In: 10th International Symposium on Computer Methods in Biomechanics, Berlin, Germany, 2012.

  36. McNally, D. S., and M. A. Adams. Internal intervertebral disc mechanics as revealed by stress profilometry. Spine 17:66–73, 1992.

    Article  CAS  PubMed  Google Scholar 

  37. Naylor, A., F. Happey, and T. Macrae. The collageneous changes in the intervertebral disk with age and their effect on its elasticity. Brit. Med. J. 2(4887):570–574, 1954.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  38. Noailly, J., J. A. Planell, and D. Lacroix. On the collagen criss-cross angles in the annuli fibrosis of lumbar spine finite element models. Biomech. Model. Mech. 10:203–219, 2011.

    Article  Google Scholar 

  39. Perie, D. S., J. J. Maclean, J. P. Owen, and J. C. Iatridis. Correlating material properties with tissue composition in enzymatically digested bovine annulus fibrosus and nucleus pulposus tissue. Ann. Biomed. Eng. 34:769–777, 2006.

    Article  PubMed Central  PubMed  Google Scholar 

  40. Schmidt, H., F. Heuer, U. Simon, A. Kettler, A. Rohlmann, L. Claes, and H.-J. Wilke. Application of a new calibration method for a three-dimensional finite element model of a human lumbar annulus fibrosus. Clin. Biomech. 21:337–344, 2006.

    Article  Google Scholar 

  41. Sharma, M., N. A. Langrana, and J. Rodriguez. Role of ligaments and facets in lumbar spinal stability. Spine 20:887–900, 1995.

    Article  CAS  PubMed  Google Scholar 

  42. Shirazi-Adl, A., A. M. Ahmed, and S. C. Shrivastava. Mechanical response of a lumbar motion segment in axial torque alone and combined with compression. Spine 11:914–927, 1986.

    Article  CAS  PubMed  Google Scholar 

  43. Skaggs, D. L., M. Weidenbaum, J. C. Iatridis, A. Ratcliffe, and V. C. Mow. Regional variation in tensile properties and biochemical composition of the human lumbar anulus fibrosus. Spine 19:1310–1319, 1994.

    Article  CAS  PubMed  Google Scholar 

  44. Skrzypiec, D., M. Tarala, P. Pollintine, P. Dolan, and M. A. Adams. When are intervertebral discs stronger than their adjacent vertebrae? Spine 32:2455–2461, 2007.

    Article  PubMed  Google Scholar 

  45. Studer, H. P., H. Riedwyl, C. A. Amstutz, J. V. M. Hanson, and P. Büchler. Patient-specific finite-element simulation of the human cornea: a clinical validation study on cataract surgery. J. Biomech. 46:751–758, 2013.

    Article  PubMed  Google Scholar 

  46. Twomey, L., and J. Taylor. Age changes in lumbar intervertebral discs. Acta Orthop. Scand. 56:496–499, 1985.

    Article  CAS  PubMed  Google Scholar 

  47. Urban, J. P. G., and A. Maroudas. Swelling of the intervertebral disc in vitro. Connect. Tissue Res. 9:1–10, 1981.

    Article  CAS  PubMed  Google Scholar 

  48. Wang, S. P., H. R. Gadikota, J. Miao, Y. H. Kim, K. B. Wood, and G. Li. A combined numerical and experimental technique for estimation of the forces and moments in the lumbar interverterbal disc. Comput. Method. Biomech. Online, 2012.

  49. White, A. A., and M. M. Panjabi. Clinical Biomechanics of the Spine. Philadelphia: Lippincott Williams & Wilkins, 1978, 752 pp.

  50. Wilke, H.-J., P. Neef, M. Caimi, T. Hoogland, and L. E. Claes. New in vivo measurements of pressures in the intervertebral disc in daily life. Spine 24:755–762, 1999.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

Funding for this research project was provided by the European Union through a Marie Curie action (FPT7-PITN-GA-2009-238690-SPINEFX).

Conflict of interest

The authors have no conflict of interest to declare.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giacomo Marini.

Additional information

Associate Editor Scott I Simon oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Marini, G., Ferguson, S.J. Modelling the Influence of Heterogeneous Annulus Material Property Distribution on Intervertebral Disk Mechanics. Ann Biomed Eng 42, 1760–1772 (2014). https://doi.org/10.1007/s10439-014-1025-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-014-1025-5

Keywords

Navigation