Skip to main content
Log in

A Novel Spatiotemporal Analysis of Peri-Ictal Spiking to Probe the Relation of Spikes and Seizures in Epilepsy

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

The relation between epileptic spikes and seizures is an important but still unresolved question in epilepsy research. Preclinical and clinical studies have produced inconclusive results on the causality or even on the existence of such a relation. We set to investigate this relation taking in consideration seizure severity and spatial extent of spike rate. We developed a novel automated spike detection algorithm based on morphological filtering techniques and then tested the hypothesis that there is a pre-ictal increase and post-ictal decrease of the spatial extent of spike rate. Peri-ictal (around seizures) spikes were detected from intracranial EEG recordings in 5 patients with temporal lobe epilepsy. The 94 recorded seizures were classified into two classes, based on the percentage of brain sites having higher or lower rate of spikes in the pre-ictal compared to post-ictal periods, with a classification accuracy of 87.4%. This seizure classification showed that seizures with increased pre-ictal spike rate and spatial extent compared to the post-ictal period were mostly (83%) clinical seizures, whereas no such statistically significant (α = 0.05) increase was observed peri-ictally in 93% of sub-clinical seizures. These consistent across patients results show the existence of a causal relation between spikes and clinical seizures, and imply resetting of the preceding spiking process by clinical seizures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Avoli, M. Do interictal discharges promote or control seizures? Experimental evidence from an in vitro model of epileptiform discharge. Epilepsia 42(S3):2–4, 2001.

    Article  PubMed  Google Scholar 

  2. Avoli, M., G. Biagini, and M. de Curtis. Do interictal spikes sustain seizures and epileptogenesis? Epilepsy Curr. 6(6):203–207, 2006.

    Article  PubMed Central  PubMed  Google Scholar 

  3. Chakravarthy, N., K. Tsakalis, S. Sabesan, and L. Iasemidis. Homeostasis of brain dynamics in epilepsy: a feedback control systems perspective of seizures. Ann. Biomed. Eng. 37:565–585, 2009.

    Article  PubMed Central  PubMed  Google Scholar 

  4. Chauvière, L., T. Doublet, A. Ghestem, S. S. Siyoucef, F. Wendling, R. Huys, V. Jirsa, F. Bartolomei, and C. Bernard. Changes in interictal spike features precede the onset of temporal lobe epilepsy. Ann. Neurol. 71(6):805–814, 2012.

    Article  PubMed  Google Scholar 

  5. De Curtis, M., A. Manfridi, and G. Biella. Activity-dependent pH shifts and periodic recurrence of spontaneous interictal spikes in a model of focal epileptogenesis. J. Neurosci. 18:7543–7551, 1998.

    PubMed  Google Scholar 

  6. De Curtis, M., L. Tassi, G. Russo, R. Mai, M. Cossu, and S. Francione. Increased discharge threshold after an interictal spike in human focal epilepsy. Eur. J. Neurosci. 22:2971–2976, 2005.

    Article  PubMed  Google Scholar 

  7. Demont-Guignard, S., P. Benquet, U. Gerber, A. Biraben, B. Martin, and F. Wendling. Distinct hyperexcitability mechanisms underlie fast ripples and epileptic spikes. Ann. Neurol. 71(3):342–352, 2012.

    Article  PubMed  Google Scholar 

  8. Dichter, M. A., and G. F. Ayala. Cellular mechanisms of epilepsy: a status report. Science 237:157–164, 1987.

    Article  CAS  PubMed  Google Scholar 

  9. Duncan, J. S. Antiepileptic Drugs and the Electroencephalogram. Epilepsia 28:259–266, 1987.

    Article  CAS  PubMed  Google Scholar 

  10. Dzhala, V. I., and K. J. Staley. Excitatory actions of endogenously released GABA contribute to initiation of ictal epileptiform activity in the developing hippocampus. J. Neurosci. 23(5):1840–1846, 2003.

    CAS  PubMed  Google Scholar 

  11. Engel, J. Jr., and R. F. Ackermann. Interictal EEG spikes correlate with decreased, rather than increased, epileptogenicity in amygdaloid kindled rats. Brain Res. 190:543–548, 1980.

    Article  PubMed  Google Scholar 

  12. Gotman, J. Relationships between triggered seizures, spontaneous seizures, and interictal spiking in the kindling model of epilepsy. Exp. Neurol. 84:259–273, 1984.

    Article  CAS  PubMed  Google Scholar 

  13. Gotman, J. Relationships between interictal spiking and seizures - Human and Experimental Evidence. Can. J. Neurol. Sci. 18:573–576, 1991.

    CAS  PubMed  Google Scholar 

  14. Gotman, J., and P. Gloor. Automatic recognition and quantification of interictal epileptic activity in the human scalp EEG. Electroencephalogr. Clin. Neurophysiol. 41:513–529, 1976.

    Article  CAS  PubMed  Google Scholar 

  15. Gotman, J., and M. G. Marciani. Electroencephalographic spiking activity, drug levels, and seizure occurrence in epileptic patients. Ann. Neurol. 17:597–603, 1985.

    Article  CAS  PubMed  Google Scholar 

  16. Huberfeld, G., L. M. de la Prida, J. Pallud, I. Cohen, and M. Le Van. Quyen, C. Adam, S. Clemenceau, M. Baulac and R. Miles. Glutamatergic pre-ictal discharges emerge at the transition to seizure in human epilepsy. Nat. Neurosci. 14(5):627–634, 2011.

    Article  CAS  PubMed  Google Scholar 

  17. Iasemidis, L. D., J. C. Principe, and J. C. Sackellares. Measurement and quantification of spatiotemporal dynamics of human epileptic seizures. In: Nonlinear Biomedical Signal Processing, Vol. II, edited by M. Akay. New York: IEEE Press, 2000, pp. 294–318.

    Google Scholar 

  18. Iasemidis, L. D., and J. C. Sackellares. The evolution with time of the spatial distribution of the largest Lyapunov exponent on the human epileptic cortex. In: Measuring Chaos in the Human Brain, edited by D. Duke, and W. Pritchard. Singapore: World Scientific, 1991, pp. 49–82.

    Google Scholar 

  19. Iasemidis, L. D., and J. C. Sackellares. Chaos theory and epilepsy. Neuroscientist 2:118–125, 1996.

    Article  Google Scholar 

  20. Iasemidis, L. D., J. C. Sackellares, H. P. Zaveri, and W. J. Williams. Phase space topography of the electrocorticogram and the Lyapunov exponent in partial seizures. Brain Topogr. 2:187–201, 1990.

    Article  CAS  PubMed  Google Scholar 

  21. Iasemidis, L. D., D. S. Shiau, J. C. Sackellares, P. M. Pardalos, and A. Prasad. Dynamical resetting of the human brain at epileptic seizures: application of nonlinear dynamics and global optimization techniques. IEEE Trans. Biomed. Eng. 51:493–506, 2004.

    Article  PubMed  Google Scholar 

  22. Katz, A., D. A. Marks, G. McCarthy, and S. S. Spencer. Does interictal spiking change prior to seizures? Electroencephalogr. Clin. Neurophysiol. 79:153, 1991.

    Article  CAS  PubMed  Google Scholar 

  23. Katz, L. C., and C. J. Shatz. Synaptic Activity and the Construction of Cortical Circuits. Science 274:1133–1138, 1996.

    Article  CAS  PubMed  Google Scholar 

  24. Krishnan, B., A. Faith, I. Vlachos, A. Roth, K. Williams, K. Noe, J. Drazkowski, L. Tapsell, J. Sirven, and L. Iasemidis. Resetting of brain dynamics: epileptic versus psychogenic nonepileptic seizures. Epilepsy Behav. 22:S74–S81, 2011.

    Article  PubMed Central  PubMed  Google Scholar 

  25. Lange, H. H., J. P. Lieb, J. Engel, Jr., and P. H. Crandall. Temporo-spatial patterns of pre-ictal spike activity in human temporal lobe epilepsy. Electroencephalogr. Clin. Neurophysiol. 56:543–555, 1983.

    Article  CAS  PubMed  Google Scholar 

  26. Lieb, J. P., S. C. Woods, A. Siccardi, P. H. Crandall, D. O. Walter, and B. Leake. Quantitative analysis of depth spiking in relation to seizure foci in patients with temporal lobe epilepsy. Electroencephalogr. Clin. Neurophysiol. 44:641–663, 1978.

    Article  CAS  PubMed  Google Scholar 

  27. Lloyd, S. Least squares quantization in PCM. IEEE Trans. Inf. Theory 28:129–137, 1982.

    Article  Google Scholar 

  28. Maragos, P., and R. W. Schafer. Morphological filters–Part II: their relations to median, order-statistic, and stack filters. IEEE Trans. Acoust. Speech Signal Process. 35:1170–1184, 1987.

    Article  Google Scholar 

  29. Nikolaou, N. G., and I. A. Antoniadis. Application of morphological operators as envelope extractors for impulsive-type periodic signals. Mech. Syst. Signal Process. 17(6):1147–1162, 2003.

    Article  Google Scholar 

  30. Nishida, S., M. Nakamura, A. Ikeda, and H. Shibasaki. Signal separation of background EEG and spike by using morphological filter. Med. Eng. Phys. 21:601–608, 1999.

    Article  CAS  PubMed  Google Scholar 

  31. Pon, L.-S., M. Sun, and R. J. Sclabassi. The bi-directional spike detection in EEG using mathematical morphology and wavelet transform. In: 6th International Conference on Signal Processing, Vol. 2, 2002, pp. 1512–1515.

  32. Racine, R. J. Modification of seizure activity by electrical stimulation: II. Motor seizure. Electroencephalogr. Clin. Neurophysiol. 32:281–294, 1972.

    Article  CAS  PubMed  Google Scholar 

  33. Rand, W. M. Objective criteria for the evaluation of clustering methods. J. Am. Stat. Assoc. 66:846–850, 1971.

    Article  Google Scholar 

  34. Sabesan, S., N. Chakravarthy, K. Tsakalis, P. Pardalos, and L. Iasemidis. Measuring resetting of brain dynamics at epileptic seizures: application of global optimization and spatial synchronization techniques. J. Comb. Optim. 17:74–97, 2009.

    Article  PubMed Central  PubMed  Google Scholar 

  35. Sabesan, S., L. Good, N. Chakravarthy, K. Tsakalis, P. M. Pardalos, and L. Iasemidis. Global optimization and spatial synchronization changes prior to epileptic seizures. In: Optimization in Medicine. New York: Springer, pp. 970–978, 2008.

  36. Serra, J. Morphological filtering: an overview. Signal Process. 38:3–11, 1994.

    Article  Google Scholar 

  37. Serra, J., and L. Vincent. An overview of morphological filtering. Circuits Syst. Signal Process. 11:47–108, 1992.

    Article  Google Scholar 

  38. Sherwin, I. Interictal-ictal transition in the feline penicillin epileptogenic focus. Electroencephalogr. Clin. Neurophysiol. 45:525–534, 1978.

    Article  CAS  PubMed  Google Scholar 

  39. Shoeb, A., H. Edwards, J. Connolly, B. Bourgeois, S. T. Treves, and J. Guttag. Patient-specific seizure onset detection. Epilepsy Behav. 5:483–498, 2004.

    Article  PubMed  Google Scholar 

  40. Staley, K. J., A. White, and F. E. Dudek. Interictal Spikes: harbingers or causes of epilepsy? Neurosci. Lett. 497(3):247–250, 2011.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  41. White, A., P. A. Williams, J. L. Hellier, S. Clark, F. E. Dudek, and K. J. Staley. EEG spike activity precedes epilepsy after kainate-induced status epilepticus. Epilepsia 51(3):371–383, 2010.

    Article  PubMed Central  PubMed  Google Scholar 

  42. Wilcoxon, F. Individual comparisons by ranking methods. Biom. Bull. 1:80–83, 1945.

    Article  Google Scholar 

  43. Wilson, S. B., C. A. Turner, R. G. Emerson, and M. L. Scheuer. Spike detection II: automatic, perception-based detection and clustering. Clin. Neurophysiol. 110:404–411, 1999.

    Article  CAS  PubMed  Google Scholar 

  44. Xu, G., J. Wang, Q. Zhang, S. Zhang, and J. Zhu. A spike detection method in EEG based on improved morphological filter. Comput. Biol. Med. 37:1647–1652, 2007.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This research was partially supported by research grants from NIH (R21 NS061310), NSF (Cyber Systems ECCS-1102390) and DoD (Concept Award PT090712).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Balu Krishnan.

Additional information

Associate Editor K. A. Athanasiou oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Krishnan, B., Vlachos, I., Faith, A. et al. A Novel Spatiotemporal Analysis of Peri-Ictal Spiking to Probe the Relation of Spikes and Seizures in Epilepsy. Ann Biomed Eng 42, 1606–1617 (2014). https://doi.org/10.1007/s10439-014-1004-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-014-1004-x

Keywords

Navigation