American Cancer Society, Breast Cancer Facts & Figures 2011–2012. http://www.cancer.org/acs/groups/content/@epidemiologysurveilance/documents/document/acspc-030975.pdf. Accessed 29 July 2013.
Aspert, N., D. Santa-Cruz, and T. Ebrahimi. Mesh: measuring errors between surfaces using the Hausdorff distance. In: Proceedings of the IEEE International Conference on Multimedia and Expo, Lausanne, Switzerland, 2002, pp. 705–708.
Azar, F., D. Metaxas, and M. Schnall. A deformable finite element model of the breast for predicting mechanical deformations under external perturbations. Acad. Radiol. 8:965–975, 2001.
CAS
PubMed
Article
Google Scholar
Azar, F., D. Metaxas, and M. Schnall. Methods for modeling and predicting mechanical deformations of the breast under external perturbations. Med. Image Anal. 6:1–27, 2002.
PubMed
Article
Google Scholar
Del Palomar, A., B. Calvo, J. Herrero, J. Lopez, and M. Doblare. A finite element model to accurately predict real deformations of the breast. Med. Eng. Phys. 30:1089–1097, 2008.
PubMed
Article
Google Scholar
Eder, M., A. Schneider, H. Feussner, A. Zimmermann, C. Hoehnke, N. Papadopulos, and L. Kovacs. Breast volume assessment based on 3D surface geometry: verification of the method using MR imaging. Biomed. Tech. 53:112–121, 2008.
Article
Google Scholar
Eder, M., F. von Waldenfels, A. Swobodnik, M. Klöppel, A. K. Pape, T. Schuster, S. Raith, E. Kitzler, N. Papadopulos, H. G. Machens, and L. Kovacs. Objective breast symmetry evaluation using 3-D surface imaging. Breast 21:152–158, 2012.
PubMed
Article
Google Scholar
Han, L., J. H. Hipwell, C. Tanner, Z. Taylor, T. Mertzanidou, J. Cardoso, S. Ourselin, and D. J. Hawkes. Development of patient-specific biomechanical models for predicting large breast deformation. Phys. Med. Biol. 57:455–172, 2012.
Google Scholar
Holzapfel, G. A., T. C. Gasser, and M. Stadler. A structural model for the viscoelastic behavior of arterial walls: continuum formulation and finite element analysis. Eur. J. Mech. A 21:441–463, 2002.
Article
Google Scholar
Hopp, T., M. Dietzel, P. A. Baltzer, P. Kreisel, W. A. Kaiser, H. Gemmeke, and N. V. Ruiter. Automatic multimodal 2D/3D breast image registration using biomechanical FEM models and intensity-based optimization. Med. Image Anal. 17:209–218, 2013.
CAS
PubMed
Article
Google Scholar
Kovacs, L., M. Eder, R. Hollweck, A. Zimmermann, M. Settles, A. Schneider, M. Endlich, A. Mueller, K. Schwenzer-Zimmerer, N. Papadopulos, and E. Biemer. Comparison between breast volume measurement using 3D surface imaging and classical techniques. Breast 16:137–145, 2007.
PubMed
Article
Google Scholar
Kovacs, L., M. Eder, R. Hollweck, A. Zimmermann, M. Settles, A. Schneider, K. Udosic, K. Schwenzer-Zimmerer, N. Papadopulos, and E. Biemer. New aspects of breast volume measurement using 3-dimensional surface imaging. Ann. Plast. Surg. 57:602–610, 2006.
CAS
PubMed
Article
Google Scholar
Kovacs, L., A. Yassouridis, A. Zimmermann, G. Brockmann, A. Woehnl, M. Blaschke, M. Eder, K. Schwenzer-Zimmerer, R. Rosenberg, N. Papadopulos, and E. Biemer. Optimization of 3-dimensional imaging of the breast region with 3-dimensional laser scanners. Ann. Plast. Surg. 56:229–236, 2006.
CAS
PubMed
Article
Google Scholar
Krouskop, T., T. Wheeler, K. Kallel, B. Garra, and T. Hall. Elastic moduli of breast and prostate tissues under compression. Ultrason. Imaging 20:260–274, 1998.
CAS
PubMed
Article
Google Scholar
Lapuebla-Ferri, A., A. D. Palomar, J. Herrero, and A.-J. Jimenez-Mocholi. A patient-specific FE-based methodology to simulate prosthesis insertion during an augmentation mammoplasty. Med. Eng. Phys. 33:1094–1102, 2011.
PubMed
Article
Google Scholar
Lee, A. W., V. Rajagopal, T. P. Babarenda Gamage, A. J. Doyle, P. M. Nielsen, and M. P. Nash. Breast lesion co-localisation between X-ray and MR images using finite element modelling. Med. Image Anal. 17:1256–1264, 2013.
PubMed
Article
Google Scholar
Mertzanidou, T., J. Hipwell, M. J. Cardoso, X. Zhang, C. Tanner, S. Ourselin, U. Bick, H. Huisman, N. Karssemeijer, and D. Hawkes. MRI to X-ray mammography registration using a volume-preserving affine transformation. Med. Image Anal. 16:966–975, 2012.
PubMed
Article
Google Scholar
Pathmanathan, P., D. Gavaghan, J. Whiteley, S. Chapman, and J. Brady. Predicting tumor location by modeling the deformation of the breast. IEEE Trans. Biomed. Eng. 55:2471–2480, 2008.
PubMed
Article
Google Scholar
Raith, S., M. Eder, F. von Waldenfels, J. Jalali, A. Volf, and L. Kovacs. Finite element simulation of the deformation of the female breast based on MRI data and 3-D surface scanning: an in vivo method to assess biomechanical material parameter sets. In: Proceedings of the 3rd International Conference and Exhibition on 3D Body Scanning Technologies, edited by N. D’Apuzo. Lugano: Hometrica Consulting, 2012, pp 196–203.
Rajagopal, V., J. Chung, D. Bullivant, P. Nielsen, and M. Nash. Finite elasticity: determining the reference state from a loaded configuration. Int. J. Numer. Methods Eng. 72:1434–1451, 2007.
Article
Google Scholar
Rajagopal, V., A. Lee, J. Chung, R. Warren, R. Highnam, and M. Nash. Creating individual-specific biomechanical models of the breast for medical image analysis. Acad. Radiol. 15:1425–1436, 2008.
PubMed
Article
Google Scholar
Rajagopal, V., P. M. F. Nielsen, and M. P. Nash. Modeling breast biomechanics for multi-modal image analysis—successes and challenges. Wiley Interdiscip. Rev. Syst. Biol. Med. 2:293–304, 2010.
PubMed
Article
Google Scholar
Roose, L., W. de Maerteleire, W. Mollemans, F. Maes, and P. Suetens. Simulation of soft-tissue deformations for breast augmentation planning. In: Lecture Notes in Computer Science: Biomedical Simulation, edited by M. Harders and G. Szekely. Berlin: Springer-Verlag, 2006, pp. 197–205.
Samani, A., J. Bishop, M. Yaffe, and D. Pelwes. Biomechanical 3D finite element modeling of the human breast using MRI data. IEEE Trans. Med. Imaging 20:271–279, 2001.
CAS
PubMed
Article
Google Scholar
Samani, A., and D. Plewes. A method to measure the hyperelastic parameters of ex vivo breast tissue samples. Phys. Med. Biol. 49:4395–4405, 2004.
PubMed
Article
Google Scholar
Samani, A., J. Zubovits, and D. Plewes. Elastic moduli of normal and pathological human breast tissues: an inversion-technique-based investigation of 169 samples. Phys. Med. Biol. 52:1565–1576, 2007.
PubMed
Article
Google Scholar
Schnabel, J., C. Tanner, A. Castellano-Smith, A. Degenhard, M. Leach, R. Hose, D. Hill, and D. Hawkes. Validation of nonrigid image registration using finite-element methods: application to breast MR images. IEEE Trans. Med. Imaging 22:23–247, 2003.
Article
Google Scholar
Sommer, G., M. Eder, L. Kovacs, H. Pathak, L. Bonitz, C. Mueller, P. Regitnig, and G. A. Holzapfel. Multiaxial mechanical properties and constitutive modeling of human adipose tissue: a basis for preoperative simulations in plastic and reconstructive surgery. Acta Biomater. 9:9036–9048, 2013.
CAS
PubMed
Article
Google Scholar
Tanner, C., J. H. Hipwell, and D. J. Hawkes. Statistical deformation models of breast compressions from biomechanical simulations. In: Lecture Notes in Computer Science: Digital Mammography, edited by E. A. Krupinsk. Berlin: Springer-Verlag, 2008, pp. 426–432.
Chapter
Google Scholar
Tanner, C., J. Schnabel, D. Hill, and D. Hawkes. Factors influencing the accuracy of biomechanical breast models. Med. Phys. 33:1758–1769, 2006.
PubMed
Article
Google Scholar
van Houten, E., M. Doyley, F. Kennedy, J. Weaver, and K. Paulsen. Initial in vivo experience with steady-state subzone-based MR elastography of the human breast. J. Magn. Reson. Imaging 17:72–85, 2003.
PubMed
Article
Google Scholar
Wellman, P., R. Howe, E. Dalton, and K. Kern. Breast tissue stiffness in compression is correlated to histological diagnosis. Technical Report, Harvard Bio Robotics Laboratory, Division of Engineering and Applied Sciences, Harvard University, 1999, pp. 1–15.