Skip to main content

Comparison of Different Material Models to Simulate 3-D Breast Deformations Using Finite Element Analysis

Abstract

Biomechanical breast modeling using finite element (FE) analysis to predict 3-D breast deformations is of interest for various biomedical applications. Currently no consensus of reliable magnitudes of mechanical breast tissue properties exists. We therefore applied 12 material properties proposed in the literature to FE simulation models derived from prone MRI breast datasets of 18 female volunteers. A gravity free starting position is computed with an iterative FE algorithm followed by the calculation of the upright position of the breast and then compared to the real breast geometry in standing position using corresponding 3-D surface scans to determine the accuracy of the simulation. Hyper-elastic constitutive models showed superior performance than linear elastic models which cannot exceed the linear Hookean domain. Within the group of applied hyper-elastic material models those proposed by Tanner et al. (Med Phys 33:1758–1769, 2006) and Rajagopal et al. (Acad Radiol 15:1425–1436, 2008) performed significantly (p < 0.01) better than other material models. The advantage of the method presented is its non-invasive character by combining 3-D volume and surface imaging with automated FE analysis. Thus, reliable biomechanical breast models based on the presented methods can be applied in future to derive patient-specific material parameter sets to improve a wide range of healthcare applications.

This is a preview of subscription content, access via your institution.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

References

  1. American Cancer Society, Breast Cancer Facts & Figures 2011–2012. http://www.cancer.org/acs/groups/content/@epidemiologysurveilance/documents/document/acspc-030975.pdf. Accessed 29 July 2013.

  2. Aspert, N., D. Santa-Cruz, and T. Ebrahimi. Mesh: measuring errors between surfaces using the Hausdorff distance. In: Proceedings of the IEEE International Conference on Multimedia and Expo, Lausanne, Switzerland, 2002, pp. 705–708.

  3. Azar, F., D. Metaxas, and M. Schnall. A deformable finite element model of the breast for predicting mechanical deformations under external perturbations. Acad. Radiol. 8:965–975, 2001.

    CAS  PubMed  Article  Google Scholar 

  4. Azar, F., D. Metaxas, and M. Schnall. Methods for modeling and predicting mechanical deformations of the breast under external perturbations. Med. Image Anal. 6:1–27, 2002.

    PubMed  Article  Google Scholar 

  5. Del Palomar, A., B. Calvo, J. Herrero, J. Lopez, and M. Doblare. A finite element model to accurately predict real deformations of the breast. Med. Eng. Phys. 30:1089–1097, 2008.

    PubMed  Article  Google Scholar 

  6. Eder, M., A. Schneider, H. Feussner, A. Zimmermann, C. Hoehnke, N. Papadopulos, and L. Kovacs. Breast volume assessment based on 3D surface geometry: verification of the method using MR imaging. Biomed. Tech. 53:112–121, 2008.

    Article  Google Scholar 

  7. Eder, M., F. von Waldenfels, A. Swobodnik, M. Klöppel, A. K. Pape, T. Schuster, S. Raith, E. Kitzler, N. Papadopulos, H. G. Machens, and L. Kovacs. Objective breast symmetry evaluation using 3-D surface imaging. Breast 21:152–158, 2012.

    PubMed  Article  Google Scholar 

  8. Han, L., J. H. Hipwell, C. Tanner, Z. Taylor, T. Mertzanidou, J. Cardoso, S. Ourselin, and D. J. Hawkes. Development of patient-specific biomechanical models for predicting large breast deformation. Phys. Med. Biol. 57:455–172, 2012.

    Google Scholar 

  9. Holzapfel, G. A., T. C. Gasser, and M. Stadler. A structural model for the viscoelastic behavior of arterial walls: continuum formulation and finite element analysis. Eur. J. Mech. A 21:441–463, 2002.

    Article  Google Scholar 

  10. Hopp, T., M. Dietzel, P. A. Baltzer, P. Kreisel, W. A. Kaiser, H. Gemmeke, and N. V. Ruiter. Automatic multimodal 2D/3D breast image registration using biomechanical FEM models and intensity-based optimization. Med. Image Anal. 17:209–218, 2013.

    CAS  PubMed  Article  Google Scholar 

  11. Kovacs, L., M. Eder, R. Hollweck, A. Zimmermann, M. Settles, A. Schneider, M. Endlich, A. Mueller, K. Schwenzer-Zimmerer, N. Papadopulos, and E. Biemer. Comparison between breast volume measurement using 3D surface imaging and classical techniques. Breast 16:137–145, 2007.

    PubMed  Article  Google Scholar 

  12. Kovacs, L., M. Eder, R. Hollweck, A. Zimmermann, M. Settles, A. Schneider, K. Udosic, K. Schwenzer-Zimmerer, N. Papadopulos, and E. Biemer. New aspects of breast volume measurement using 3-dimensional surface imaging. Ann. Plast. Surg. 57:602–610, 2006.

    CAS  PubMed  Article  Google Scholar 

  13. Kovacs, L., A. Yassouridis, A. Zimmermann, G. Brockmann, A. Woehnl, M. Blaschke, M. Eder, K. Schwenzer-Zimmerer, R. Rosenberg, N. Papadopulos, and E. Biemer. Optimization of 3-dimensional imaging of the breast region with 3-dimensional laser scanners. Ann. Plast. Surg. 56:229–236, 2006.

    CAS  PubMed  Article  Google Scholar 

  14. Krouskop, T., T. Wheeler, K. Kallel, B. Garra, and T. Hall. Elastic moduli of breast and prostate tissues under compression. Ultrason. Imaging 20:260–274, 1998.

    CAS  PubMed  Article  Google Scholar 

  15. Lapuebla-Ferri, A., A. D. Palomar, J. Herrero, and A.-J. Jimenez-Mocholi. A patient-specific FE-based methodology to simulate prosthesis insertion during an augmentation mammoplasty. Med. Eng. Phys. 33:1094–1102, 2011.

    PubMed  Article  Google Scholar 

  16. Lee, A. W., V. Rajagopal, T. P. Babarenda Gamage, A. J. Doyle, P. M. Nielsen, and M. P. Nash. Breast lesion co-localisation between X-ray and MR images using finite element modelling. Med. Image Anal. 17:1256–1264, 2013.

    PubMed  Article  Google Scholar 

  17. Mertzanidou, T., J. Hipwell, M. J. Cardoso, X. Zhang, C. Tanner, S. Ourselin, U. Bick, H. Huisman, N. Karssemeijer, and D. Hawkes. MRI to X-ray mammography registration using a volume-preserving affine transformation. Med. Image Anal. 16:966–975, 2012.

    PubMed  Article  Google Scholar 

  18. Pathmanathan, P., D. Gavaghan, J. Whiteley, S. Chapman, and J. Brady. Predicting tumor location by modeling the deformation of the breast. IEEE Trans. Biomed. Eng. 55:2471–2480, 2008.

    PubMed  Article  Google Scholar 

  19. Raith, S., M. Eder, F. von Waldenfels, J. Jalali, A. Volf, and L. Kovacs. Finite element simulation of the deformation of the female breast based on MRI data and 3-D surface scanning: an in vivo method to assess biomechanical material parameter sets. In: Proceedings of the 3rd International Conference and Exhibition on 3D Body Scanning Technologies, edited by N. D’Apuzo. Lugano: Hometrica Consulting, 2012, pp 196–203.

  20. Rajagopal, V., J. Chung, D. Bullivant, P. Nielsen, and M. Nash. Finite elasticity: determining the reference state from a loaded configuration. Int. J. Numer. Methods Eng. 72:1434–1451, 2007.

    Article  Google Scholar 

  21. Rajagopal, V., A. Lee, J. Chung, R. Warren, R. Highnam, and M. Nash. Creating individual-specific biomechanical models of the breast for medical image analysis. Acad. Radiol. 15:1425–1436, 2008.

    PubMed  Article  Google Scholar 

  22. Rajagopal, V., P. M. F. Nielsen, and M. P. Nash. Modeling breast biomechanics for multi-modal image analysis—successes and challenges. Wiley Interdiscip. Rev. Syst. Biol. Med. 2:293–304, 2010.

    PubMed  Article  Google Scholar 

  23. Roose, L., W. de Maerteleire, W. Mollemans, F. Maes, and P. Suetens. Simulation of soft-tissue deformations for breast augmentation planning. In: Lecture Notes in Computer Science: Biomedical Simulation, edited by M. Harders and G. Szekely. Berlin: Springer-Verlag, 2006, pp. 197–205.

  24. Samani, A., J. Bishop, M. Yaffe, and D. Pelwes. Biomechanical 3D finite element modeling of the human breast using MRI data. IEEE Trans. Med. Imaging 20:271–279, 2001.

    CAS  PubMed  Article  Google Scholar 

  25. Samani, A., and D. Plewes. A method to measure the hyperelastic parameters of ex vivo breast tissue samples. Phys. Med. Biol. 49:4395–4405, 2004.

    PubMed  Article  Google Scholar 

  26. Samani, A., J. Zubovits, and D. Plewes. Elastic moduli of normal and pathological human breast tissues: an inversion-technique-based investigation of 169 samples. Phys. Med. Biol. 52:1565–1576, 2007.

    PubMed  Article  Google Scholar 

  27. Schnabel, J., C. Tanner, A. Castellano-Smith, A. Degenhard, M. Leach, R. Hose, D. Hill, and D. Hawkes. Validation of nonrigid image registration using finite-element methods: application to breast MR images. IEEE Trans. Med. Imaging 22:23–247, 2003.

    Article  Google Scholar 

  28. Sommer, G., M. Eder, L. Kovacs, H. Pathak, L. Bonitz, C. Mueller, P. Regitnig, and G. A. Holzapfel. Multiaxial mechanical properties and constitutive modeling of human adipose tissue: a basis for preoperative simulations in plastic and reconstructive surgery. Acta Biomater. 9:9036–9048, 2013.

    CAS  PubMed  Article  Google Scholar 

  29. Tanner, C., J. H. Hipwell, and D. J. Hawkes. Statistical deformation models of breast compressions from biomechanical simulations. In: Lecture Notes in Computer Science: Digital Mammography, edited by E. A. Krupinsk. Berlin: Springer-Verlag, 2008, pp. 426–432.

    Chapter  Google Scholar 

  30. Tanner, C., J. Schnabel, D. Hill, and D. Hawkes. Factors influencing the accuracy of biomechanical breast models. Med. Phys. 33:1758–1769, 2006.

    PubMed  Article  Google Scholar 

  31. van Houten, E., M. Doyley, F. Kennedy, J. Weaver, and K. Paulsen. Initial in vivo experience with steady-state subzone-based MR elastography of the human breast. J. Magn. Reson. Imaging 17:72–85, 2003.

    PubMed  Article  Google Scholar 

  32. Wellman, P., R. Howe, E. Dalton, and K. Kern. Breast tissue stiffness in compression is correlated to histological diagnosis. Technical Report, Harvard Bio Robotics Laboratory, Division of Engineering and Applied Sciences, Harvard University, 1999, pp. 1–15.

Download references

Acknowledgments

The authors would like to thank Prof. Dr. A. Haase, Director of the Institute of Medical Engineering at the Technische Universität München (IMETUM), Germany for his cooperation and infrastructural support. Furthermore, the authors are grateful to Prof. Dr. E. J. Rummeny, Director of the Institute of Radiology and Interventional Radiology, Klinikum rechts der Isar, Technische Universität München for his cooperation and infrastructural support, which contributed enormously to the realization and success of this study. Funding for the study was received by the Federal Ministry of Economics and Technology (BMWi-Funding No. 16INO607).

Conflict of interest

All authors disclose any financial or commercial associations and personal relationships with other people, organisations or with the companies named in the study that would inappropriately influence (bias) their work or create a conflict of interest with information presented in the submitted study. None of the authors are shareholders of one of the named companies whose hard- and software products were used in the study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laszlo Kovacs.

Additional information

Maximilian Eder and Stefan Raith contributed equally to the article and share first authorship.

Associate Editor Peter E. McHugh oversaw the review of this article.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Eder, M., Raith, S., Jalali, J. et al. Comparison of Different Material Models to Simulate 3-D Breast Deformations Using Finite Element Analysis. Ann Biomed Eng 42, 843–857 (2014). https://doi.org/10.1007/s10439-013-0962-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-013-0962-8

Keywords

  • Breast biomechanics
  • Finite element analysis
  • Hyper-elastic material model
  • Numerical simulation
  • 3-D surface imaging