Skip to main content
Log in

Region of Stability Derived by Center of Mass Acceleration Better Identifies Individuals with Difficulty in Sit-to-Stand Movement

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Poor performance of sit-to-stand (STS) has been identified as one of the predictors of fall risk among elderly adults. This study examined differences in the whole body center of mass (COM) kinematic variables in relation to the regions of stability between elderly adults with difficulty in STS and healthy individuals. Whole body motion data while performing STS were collected from 10 young, 10 elderly and 10 elderly subjects with difficulty in STS. Young subjects were also asked to stand up with their trunk purposely bent forward. The regions of stability were defined with COM position at seat-off and its instantaneous velocity (ROSv) or peak acceleration (ROSa), using a single-link-plus-foot inverted pendulum model. Peak COM accelerations prior to seat-off differed significantly among groups; however, no significant differences were detected in its velocities at seat-off. The ROSa demonstrated a better ability to discriminate elderly adults with difficulty from healthy individuals. Although a similar COM momentum was observed at seat-off, how the momentum was controlled differed between healthy individuals and individuals with difficulty in STS. ROSa could provide insight into how the COM momentum is controlled prior to seat-off, which could be used to differentiate individuals with functional limitations from healthy individuals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Alexander, N. B., M. M. Gross, J. L. Medell, and M. R. Hofmeyer. Effects of functional ability and training on chair-rise biomechanics in older adults. J. Gerontol. A Biol. Sci. Med. Sci. 56(9):M538–M547, 2001.

    Article  CAS  PubMed  Google Scholar 

  2. Bhatt, T., J. D. Wening, and Y. C. Pai. Adaptive control of gait stability in reducing slip-related backward loss of balance. Exp. Brain Res. 170(1):61–73, 2006.

    Article  CAS  PubMed  Google Scholar 

  3. Bohannon, R. W. Reference values for the five-repetition sit-to-stand test: a descriptive meta-analysis of data from elders. Percept. Mot. Skills 103(1):215–222, 2006.

    Article  PubMed  Google Scholar 

  4. Butler, P. B., A. V. Nene, and R. E. Major. Biomechanics of transfer from sitting to the standing position in some neuromuscular diseases. Physiotherapy 77(8):521–525, 1991.

    Article  Google Scholar 

  5. Campbell, A. J., M. J. Borrie, and G. F. Spears. Risk factors for falls in a community-based prospective study of people 70 years and older. J. Gerontol. 44(4):M112–M117, 1989.

    Article  CAS  PubMed  Google Scholar 

  6. Chou, L. S., K. R. Kaufman, R. H. Brey, and L. F. Draganich. Motion of the whole body’s center of mass when stepping over obstacles of different heights. Gait Posture 13(1):17–26, 2001.

    Article  CAS  PubMed  Google Scholar 

  7. Dawson, D., G. Hendershot, and J. Fulton. Aging in the eighties. Functional limitations of individuals age 65 and over. Adv. Data Vital Health Stat. 133:1–12, 1987.

    Google Scholar 

  8. Doorenbosch, C. A., J. Harlaar, M. E. Roebroeck, and G. J. Lankhorst. Two strategies of transferring from sit-to-stand; the activation of monoarticular and biarticular muscles. J. Biomech. 27(11):1299–1307, 1994.

    Article  CAS  PubMed  Google Scholar 

  9. Fan, J., S. Upadhye, and A. Worster. Understanding receiver operating characteristic (ROC) curves. CJEM 8(1):19–20, 2006.

    PubMed  Google Scholar 

  10. Fujimoto, M., and L. S. Chou. Dynamic balance control during sit-to-stand movement: an examination with the center of mass acceleration. J. Biomech. 45(3):543–548, 2012.

    Article  PubMed  Google Scholar 

  11. Gross, M. M., P. J. Stevenson, S. L. Charette, G. Pyka, and R. Marcus. Effect of muscle strength and movement speed on the biomechanics of rising from a chair in healthy elderly and young women. Gait Posture 8(3):175–185, 1998.

    Article  PubMed  Google Scholar 

  12. Hahn, M. E., and L. S. Chou. Age-related reduction in sagittal plane center of mass motion during obstacle crossing. J. Biomech. 37(6):837–844, 2004.

    Article  PubMed  Google Scholar 

  13. Harper, C. M., and Y. M. Lyles. Physiology and complications of bed rest. J. Am. Geriatr. Soc. 36(11):1047–1054, 1988.

    CAS  PubMed  Google Scholar 

  14. Hirschfeld, H., M. Thorsteinsdottir, and E. Olsson. Coordinated ground forces exerted by buttocks and feet are adequately programmed for weight transfer during sit-to-stand. J. Neurophysiol. 82(6):3021–3029, 1999.

    CAS  PubMed  Google Scholar 

  15. Hodge, W. A., K. L. Carlson, R. S. Fijan, R. G. Burgess, P. O. Riley, W. H. Harris, and R. W. Mann. Contact pressures from an instrumented hip endoprosthesis. J. Bone Joint Surg. Am. 71(9):1378–1386, 1989.

    CAS  PubMed  Google Scholar 

  16. Hughes, M. A., B. S. Myers, and M. L. Schenkman. The role of strength in rising from a chair in the functionally impaired elderly. J. Biomech. 29(12):1509–1513, 1996.

    Article  CAS  PubMed  Google Scholar 

  17. Hughes, M. A., and M. L. Schenkman. Chair rise strategy in the functionally impaired elderly. J. Rehabil. Res. Dev. 33(4):409–412, 1996.

    CAS  PubMed  Google Scholar 

  18. Hughes, M. A., S. A. Studenski, D. K. Weiner, and R. M. Long. Chair rise strategies in the elderly. Clin. Biomech. 9(3):187–192, 1994.

    Article  CAS  Google Scholar 

  19. Ikeda, E. R., M. L. Schenkman, P. O. Riley, and W. A. Hodge. Influence of age on dynamics of rising from a chair. Phys. Ther. 71(6):473–481, 1991.

    CAS  PubMed  Google Scholar 

  20. Leon, J., and T. Lair. Functional Status of the Noninstitutionalized Elderly: Estimates of ADL and IADL Difficulties. DHHS Publication No. (PHS) 90-3462. Rockville, MD: Public Health Service, 1990.

  21. Lindemann, U., H. Claus, M. Stuber, P. Augat, R. Muche, T. Nikolaus, and C. Becker. Measuring power during the sit-to-stand transfer. Eur. J. Appl. Physiol. 89(5):466–470, 2003.

    Article  PubMed  Google Scholar 

  22. Muir, S. W., K. Berg, B. Chesworth, and M. Speechley. Use of the Berg Balance Scale for predicting multiple falls in community-dwelling elderly people: a prospective study. Phys. Ther. 88(4):449–459; discussion 460–461, 2008.

    Google Scholar 

  23. Nevitt, M. C., S. R. Cummings, S. Kidd, and D. Black. Risk factors for recurrent nonsyncopal falls. A prospective study. JAMA 261(18):2663–2668, 1989.

    Article  CAS  PubMed  Google Scholar 

  24. Pai, Y. C., B. J. Naughton, R. W. Chang, and M. W. Rogers. Control of body centre of mass momentum during sit-to-stand among young and elderly adults. Gait Posture 2:109–116, 1994.

    Article  Google Scholar 

  25. Pai, Y. C., and J. Patton. Center of mass velocity-position predictions for balance control. J. Biomech. 30(4):347–354, 1997.

    Article  CAS  PubMed  Google Scholar 

  26. Pai, Y. C., J. D. Wening, E. F. Runtz, K. Iqbal, and M. J. Pavol. Role of feedforward control of movement stability in reducing slip-related balance loss and falls among older adults. J. Neurophysiol. 90(2):755–762, 2003.

    Article  PubMed  Google Scholar 

  27. Papa, E., and A. Cappozzo. A telescopic inverted-pendulum model of the musculo-skeletal system and its use for the analysis of the sit-to-stand motor task. J. Biomech. 32(11):1205–1212, 1999.

    Article  CAS  PubMed  Google Scholar 

  28. Papa, E., and A. Cappozzo. Sit-to-stand motor strategies investigated in able-bodied young and elderly subjects. J. Biomech. 33(9):1113–1122, 2000.

    Article  CAS  PubMed  Google Scholar 

  29. Pavol, M. J., and Y. C. Pai. Feedforward adaptations are used to compensate for a potential loss of balance. Exp. Brain Res. 145(4):528–538, 2002.

    Article  PubMed  Google Scholar 

  30. Savelberg, H. H., A. Fastenau, P. J. Willems, and K. Meijer. The load/capacity ratio affects the sit-to-stand movement strategy. Clin. Biomech. (Bristol, Avon) 22(7):805–812, 2007.

    Article  CAS  Google Scholar 

  31. Scarborough, D. M., D. E. Krebs, and B. A. Harris. Quadriceps muscle strength and dynamic stability in elderly persons. Gait Posture 10(1):10–20, 1999.

    Article  Google Scholar 

  32. Scarborough, D. M., C. A. McGibbon, and D. E. Krebs. Chair rise strategies in older adults with functional limitations. J. Rehabil. Res. Dev. 44(1):33–42, 2007.

    Article  PubMed  Google Scholar 

  33. Schenkman, M., R. A. Berger, P. O. Riley, R. W. Mann, and W. A. Hodge. Whole-body movements during rising to standing from sitting. Phys. Ther. 70(10):638–648; discussion 648–651, 1990.

    Google Scholar 

  34. Schenkman, M., M. A. Hughes, G. Samsa, and S. Studenski. The relative importance of strength and balance in chair rise by functionally impaired older individuals. J. Am. Geriatr. Soc. 44(12):1441–1446, 1996.

    CAS  PubMed  Google Scholar 

  35. Schultz, A. B., N. B. Alexander, and J. A. Ashton-Miller. Biomechanical analyses of rising from a chair. J. Biomech. 25(12):1383–1391, 1992.

    Article  CAS  PubMed  Google Scholar 

  36. Tideiksaar, R. Fall prevention in the home. Top. Rehabil. 3(1):57–64, 1987.

    Article  Google Scholar 

  37. Tiedemann, A., H. Shimada, C. Sherrington, S. Murray, and S. Lord. The comparative ability of eight functional mobility tests for predicting falls in community-dwelling older people. Age Ageing 37(4):430–435, 2008.

    Article  PubMed  Google Scholar 

  38. Tinetti, M. E., M. Speechley, and S. F. Ginter. Risk factors for falls among elderly persons living in the community. N. Engl. J. Med. 319(26):1701–1707, 1988.

    Article  CAS  PubMed  Google Scholar 

  39. Tinetti, M. E., T. F. Williams, and R. Mayewski. Fall risk index for elderly patients based on number of chronic disabilities. Am. J. Med. 80(3):429–434, 1986.

    Article  CAS  PubMed  Google Scholar 

  40. Whitney, S. L., D. M. Wrisley, G. F. Marchetti, M. A. Gee, M. S. Redfern, and J. M. Furman. Clinical measurement of sit-to-stand performance in people with balance disorders: validity of data for the Five-Times-Sit-to-Stand Test. Phys. Ther. 85(10):1034–1045, 2005.

    PubMed  Google Scholar 

  41. Winter, D. A. Biomechanics and Motor Control of Human Movement. New York: Wiley, 1990.

    Google Scholar 

  42. Woltring, H. J. A FORTRAN package for generalized, cross-validatory spline smoothing and differentiation. Adv. Eng. Softw. 8(2):104–113, 1986.

    Article  Google Scholar 

  43. Yang, F., D. Espy, and Y. C. Pai. Feasible stability region in the frontal plane during human gait. Ann. Biomed. Eng. 37(12):2606–2614, 2009.

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Tzurei Chen for her help with data collection.

Conflict of interest

We declare that we have no commercial associations that might pose a conflict of interest in connection with the article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li-Shan Chou.

Additional information

Associate Editor Thurmon E. Lockhart oversaw the review of this article.

Associate Editor Michael S. Detamore oversaw the review of this article.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 611 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fujimoto, M., Chou, LS. Region of Stability Derived by Center of Mass Acceleration Better Identifies Individuals with Difficulty in Sit-to-Stand Movement. Ann Biomed Eng 42, 733–741 (2014). https://doi.org/10.1007/s10439-013-0945-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-013-0945-9

Keywords

Navigation