Skip to main content
Log in

Quantification of a Thermal Damage Threshold for Astrocytes Using Infrared Laser Generated Heat Gradients

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

The response of cells and tissues to elevated temperatures is highly important in several research areas, especially in the area of infrared neural stimulation. So far, only the heat response of neurons has been considered. In this study, primary rat astrocytes were exposed to infrared laser pulses of various pulse lengths and the resulting cell morphology changes and cell migration was studied using light microscopy. By using a finite element model of the experimental setup the temperature distribution was simulated and the temperatures and times to induce morphological changes and migration were extracted. These threshold temperatures were used in the commonly used first-order reaction model according to Arrhenius to extract the kinetic parameters, i.e., the activation energy, E a, and the frequency factor, A c, for the system. A damage signal ratio threshold was defined and calculated to be 6% for the astrocytes to change morphology and start migrating.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Albert, E. S., J. M. Bec, G. Desmadryl, K. Chekroud, C. Travo, S. Gaboyard, F. Bardin, I. Marc, M. Dumas, G. Lenaers, C. Hamel, A. Muller, and C. Chabbert. TRPV4 channels mediate the infrared laser-evoked response in sensory neurons. J. Neurophysiol. 107(12):3227–3234, 2012.

    Article  CAS  PubMed  Google Scholar 

  2. Bhowmick, S., J. E. Coad, D. J. Swanlund, and J. C. Bischof. In vitro thermal therapy of AT-1 Dunning prostate tumours. Int. J. Hyperthermia 20(1):73–92, 2004.

    Article  CAS  PubMed  Google Scholar 

  3. Bhowmick, S., D. J. Swanlund, and J. C. Bischof. Supraphysiological thermal injury in Dunning AT-1 prostate tumor cells. J. Biomech. Eng. 122(1):51–59, 2000.

    Article  CAS  PubMed  Google Scholar 

  4. Dittami, G. M., S. M. Rajguru, R. A. Lasher, R. W. Hitchcock, and R. D. Rabbitt. Intracellular calcium transients evoked by pulsed infrared radiation in neonatal cardiomyocytes. J. Physiol. 589:1295–1306, 2011.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Douglas Fields, D. R. The Other Brain: The Scientific and Medical Breakthroughs That Will Heal Our Brains and Revolutionize Our Health (1st ed.). New York: Simon & Schuster, 2009.

    Google Scholar 

  6. Ebbesen, C. L., and H. Bruus. Analysis of laser-induced heating in optical neuronal guidance. J. Neurosci. Methods 209(1):168–177, 2012.

    Article  PubMed  Google Scholar 

  7. Eul, S., A. I. Matic, M. Otting, J. T. Walsh Jr., and C. P. Richter. Optical stimulation in mice lacking the TRPV1 channel. In: Proceedings of the SPIE—The International Society for Optical Engineering (USA), 2009, p. 71800S (71805 pp.).

  8. Fork, R. L. Laser stimulation of nerve cells in Aplysia. Science 171(3974):907–908, 1971.

    Article  CAS  PubMed  Google Scholar 

  9. Goyal, V., S. Rajguru, A. I. Matic, S. R. Stock, and C. P. Richter. Acute damage threshold for infrared neural stimulation of the cochlea: functional and histological evaluation. Anat. Rec. (Hoboken) 295(11):1987–1999, 2012.

    Article  Google Scholar 

  10. He, X., and J. C. Bischof. Quantification of temperature and injury response in thermal therapy and cryosurgery. Crit. Rev. Biomed. Eng. 31(5–6):355–422, 2003.

    Article  PubMed  Google Scholar 

  11. He, X., and J. C. Bischof. The kinetics of thermal injury in human renal carcinoma cells. Ann. Biomed. Eng. 33(4):502–510, 2005.

    Article  PubMed  Google Scholar 

  12. Henriques, Jr., F. C. Studies of thermal injury; the predictability and the significance of thermally induced rate processes leading to irreversible epidermal injury. Arch. Pathol. (Chic.) 43(5):489–502, 1947.

    Google Scholar 

  13. Izzo, A. D., C. P. Richter, E. D. Jansen, and J. T. Walsh, Jr. Laser stimulation of the auditory nerve. Lasers Surg. Med. 38(8):745–753, 2006.

    Article  PubMed  Google Scholar 

  14. Izzo, A. D., E. Suh, J. Pathria, J. T. Walsh, D. S. Whitlon, and C. P. Richter. Selectivity of neural stimulation in the auditory system: a comparison of optic and electric stimuli. J. Biomed. Opt. 12(2):021008, 2007.

    Article  PubMed  Google Scholar 

  15. Kornyei, Z., A. Czirok, T. Vicsek, and E. Madarasz. Proliferative and migratory responses of astrocytes to in vitro injury. J. Neurosci. Res. 61(4):421–429, 2000.

    Article  CAS  PubMed  Google Scholar 

  16. Lepock, J. R. Cellular effects of hyperthermia: relevance to the minimum dose for thermal damage. Int. J. Hyperthermia 19(3):252–266, 2003.

    Article  CAS  PubMed  Google Scholar 

  17. Liljemalm, R., T. Nyberg, and H. von Holst. Heating during infrared neural stimulation. Lasers Surg. Med. 45(7):469–481, 2013.

    Article  PubMed  Google Scholar 

  18. Nishimura, R. N., B. E. Dwyer, K. Clegg, R. Cole, and J. de Vellis. Comparison of the heat shock response in cultured cortical neurons and astrocytes. Brain Res. Mol. Brain Res. 9(1–2):39–45, 1991.

    Article  CAS  PubMed  Google Scholar 

  19. O’Neill, D. P., T. Peng, P. Stiegler, U. Mayrhauser, S. Koestenbauer, K. Tscheliessnigg, and S. J. Payne. A three-state mathematical model of hyperthermic cell death. Ann. Biomed. Eng. 39(1):570–579, 2011.

    Article  PubMed  Google Scholar 

  20. Pearce, J. Mathematical models of laser-induced tissue thermal damage. Int. J. Hyperthermia 27(8):741–750, 2011.

    Article  PubMed  Google Scholar 

  21. Rajguru, S. M., A. I. Matic, A. M. Robinson, A. J. Fishman, L. E. Moreno, A. Bradley, I. Vujanovic, J. Breen, J. D. Wells, M. Bendett, and C. P. Richter. Optical cochlear implants: evaluation of surgical approach and laser parameters in cats. Hear. Res. 269(1–2):102–111, 2010.

    Article  PubMed Central  PubMed  Google Scholar 

  22. Shapiro, M. G., K. Homma, S. Villarreal, C.-P. Richter, and F. Bezanilla. Infrared light excites cells by changing their electrical capacitance. Nat. Commun. 3:736, 2012.

    Article  PubMed Central  PubMed  Google Scholar 

  23. Simanovskii, D. M., M. A. Mackanos, A. R. Irani, C. E. O’Connell-Rodwell, C. H. Contag, H. A. Schwettman, and D. V. Palanker. Cellular tolerance to pulsed hyperthermia. Phys. Rev. E 74(1 Pt 1):011915, 2006.

    Article  CAS  Google Scholar 

  24. Thompson, A. C., S. A. Wade, W. G. Brown, and P. R. Stoddart. Modeling of light absorption in tissue during infrared neural stimulation. J. Biomed. Opt. 17(7):075002, 2012.

    Article  PubMed  Google Scholar 

  25. Wells, J., C. Kao, P. Konrad, T. Milner, J. Kim, A. Mahadevan-Jansen, and E. D. Jansen. Biophysical mechanisms of transient optical stimulation of peripheral nerve. Biophys. J. 93(7):2567–2580, 2007.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Wells, J. D., S. Thomsen, P. Whitaker, E. D. Jansen, C. C. Kao, P. E. Konrad, and A. Mahadevan-Jansen. Optically mediated nerve stimulation: identification of injury thresholds. Lasers Surg. Med. 39(6):513–526, 2007.

    Article  PubMed  Google Scholar 

  27. Wieliczka, D. M., W. Shengshan, and M. R. Querry. Wedge shaped cell for highly absorbent liquids: infrared optical constants of water. Appl. Opt. 28:1714–1719, 1989.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Funding was received from the Product Innovation Engineering Program (PIEp) through the Innovation Driven Research Education (IDRE). We are grateful to Professor Hans Hebert at the School for Technology and Health at the Royal Institute of technology for providing the digital microscope.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Rickard Liljemalm or Tobias Nyberg.

Additional information

Associate Editor Holly Ober oversaw the review of this article.

Electronic supplementary material

Below is the link to the electronic supplementary material.

AVI (3502 KB)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liljemalm, R., Nyberg, T. Quantification of a Thermal Damage Threshold for Astrocytes Using Infrared Laser Generated Heat Gradients. Ann Biomed Eng 42, 822–832 (2014). https://doi.org/10.1007/s10439-013-0940-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-013-0940-1

Keywords

Navigation