Skip to main content

Advertisement

Log in

Seeding Cells on Calcium Phosphate Scaffolds Using Hydrogel Enhanced Osteoblast Proliferation and Differentiation

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Internal pores in calcium phosphate (CaP) scaffolds pose an obstacle in cell seeding efficiency. Previous studies have shown inverse relationships between cell attachment and internal pore size, which mainly resulted from cells flowing to the bottom of culture plates. In order to overcome this structure-based setback, we have designed a method for cell seeding that involves hydrogel. CaP scaffolds fabricated with hydroxyapatite, biphasic calcium phosphate, and β-tricalcium phosphate, had respective porosities of 77.0, 77.9, and 82.5% and pore diameters of 671.1, 694.7, and 842.8 μm. We seeded the cells on the scaffolds using two methods: the first using osteogenic medium and the second using hydrogel to entrap cells. As expected, cell seeding efficiency of the groups with hydrogel ranged from 92.5 to 96.3%, whereas efficiency of the control groups ranged only from 64.2 to 71.8%. Cell proliferation followed a similar trend, which may have further influenced early stages of cell differentiation. We suggest that our method of cell seeding with hydrogel can impact the field of tissue engineering even further with modifications of the materials or the addition of biological factors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Abbott, A. Cell culture: biology’s new dimension. Nature 424(6951):870–872, 2003.

    Article  CAS  PubMed  Google Scholar 

  2. Cukierman, E., R. Pankov, D. R. Stevens, and K. M. Yamada. Taking cell-matrix adhesions to the third dimension. Science 294(5547):1708–1712, 2001.

    Article  CAS  PubMed  Google Scholar 

  3. Daculsi, G. Biphasic calcium phosphate concept applied to artificial bone, implant coating and injectable bone substitute. Biomaterials 19(16):1473–1478, 1998.

    Article  CAS  PubMed  Google Scholar 

  4. Damien, E., K. Hing, S. Saeed, and P. A. Revell. A preliminary study on the enhancement of the osteointegration of a novel synthetic hydroxyapatite scaffold in vivo. J. Biomed. Mater. Res. A 66A(2):241–246, 2003.

    Article  CAS  Google Scholar 

  5. Degroot, K. Bioceramics consisting of calcium-phosphate salts. Biomaterials 1(1):47–50, 1980.

    Article  CAS  Google Scholar 

  6. Delgado-Calle, J., C. Sanudo, L. Sanchez-Verde, R. J. Garcia-Renedo, J. Arozamena, and J. A. Riancho. Epigenetic regulation of alkaline phosphatase in human cells of the osteoblastic lineage. Bone 49(4):830–838, 2011.

    Article  CAS  PubMed  Google Scholar 

  7. Dorozhkin, S. V., and M. Epple. Biological and medical significance of calcium phosphates. Angew. Chem. Int. Ed. 41(17):3130–3146, 2002.

    Article  CAS  Google Scholar 

  8. Dvir-Ginzberg, M., I. Gamlieli-Bonshtein, R. Agbaria, and S. Cohen. Liver tissue engineering within alginate scaffolds: effects of cell-seeding density on hepatocyte viability, morphology, and function. Tissue Eng. 9(4):757–766, 2003.

    Article  CAS  PubMed  Google Scholar 

  9. Hattori, H., K. Masuoka, M. Sato, M. Ishihara, T. Asazuma, B. Takase, M. Kikuchi, K. Nemoto, and M. Ishihara. Bone formation using human adipose tissue-derived stromal cells and a biodegradable scaffold. J. Biomed. Mater. Res. B 76B(1):230–239, 2006.

    Article  CAS  Google Scholar 

  10. Hench, L. L., and J. M. Polak. Third-generation biomedical materials. Science 295(5557):1014–1017, 2002.

    Google Scholar 

  11. Hoffman, R. M. To do tissue-culture in 2 or 3 dimensions—that is the question. Stem Cells 11(2):105–111, 1993.

    Article  CAS  PubMed  Google Scholar 

  12. Holmes, T. C., S. de Lacalle, X. Su, G. S. Liu, A. Rich, and S. G. Zhang. Extensive neurite outgrowth and active synapse formation on self-assembling peptide scaffolds. Proc. Natl Acad. Sci. U.S.A. 97(12):6728–6733, 2000.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Holtorf, H. L., T. L. Sheffield, C. G. Ambrose, J. A. Jansen, and A. G. Mikos. Flow perfusion culture of marrow stromal cells seeded on porous biphasic calcium phosphate ceramics. Ann. Biomed. Eng. 33(9):1238–1248, 2005.

    Article  PubMed  Google Scholar 

  14. Horii, A., X. M. Wang, F. Gelain, and S. G. Zhang. Biological designer self-assembling peptide nanofiber scaffolds significantly enhance osteoblast proliferation, differentiation and 3-D migration. PLoS ONE 2(2):e190, 2007.

    Google Scholar 

  15. Hubbell, J. A. Biomater. Tissue Eng. 13(6):565–576, 1995.

    CAS  Google Scholar 

  16. Hutmacher, D. W. Scaffolds in tissue engineering bone and cartilage. Biomaterials 21(24):2529–2543, 2000.

    Article  CAS  PubMed  Google Scholar 

  17. Kim, Y. B., and G. Kim. Rapid-prototyped collagen scaffolds reinforced with PCL/beta-TCP nanofibres to obtain high cell seeding efficiency and enhanced mechanical properties for bone tissue regeneration. J. Mater. Chem. 22(33):16880–16889, 2012.

    Article  CAS  Google Scholar 

  18. Kim, S. S., M. S. Park, O. Jeon, C. Y. Choi, and B. S. Kim. Poly(lactide-co-glycolide)/hydroxyapatite composite scaffolds for bone tissue engineering. Biomaterials 27(8):1399–1409, 2006.

    Article  CAS  PubMed  Google Scholar 

  19. Kim, S. M., S. A. Yi, S. H. Choi, K. M. Kim, and Y. K. Lee. Gelatin-layered and multi-sized porous beta-tricalcium phosphate for tissue engineering scaffold. Nanoscale Res. Lett. 7(1):78, 2012.

    Article  PubMed Central  PubMed  Google Scholar 

  20. Koch, M. A., E. J. Vrij, E. Engel, J. A. Planell, and D. Lacroix. Perfusion cell seeding on large porous PLA/calcium phosphate composite scaffolds in a perfusion bioreactor system under varying perfusion parameters. J. Biomed. Mater. Res. A 95A(4):1011–1018, 2010.

    Article  CAS  Google Scholar 

  21. Laurencin, C. T. N. L. S. Nanotechnology and Tissue Engineering: The Scaffold. Boca Raton: CRC Press, 2008.

  22. McGrath, A. M., L. N. Novikova, L. N. Novikov, and M. Wiberg. BD™ PuraMatrix™ peptide hydrogel seeded with Schwann cells for peripheral nerve regeneration. Brain Res. Bull. 83(5):207–213, 2010.

    Article  CAS  PubMed  Google Scholar 

  23. Narmoneva, D. A., O. Oni, A. L. Sieminski, S. G. Zhang, J. P. Gertler, R. D. Kamm, and R. T. Lee. Self-assembling short oligopeptides and the promotion of angiogenesis. Biomaterials 26(23):4837–4846, 2005.

    Article  CAS  PubMed  Google Scholar 

  24. Nery, E. B., R. Z. Legeros, K. L. Lynch, and K. Lee. Tissue-response to biphasic calcium-phosphate ceramic with different ratios of Ha/Beta-Tcp in periodontal osseous defects. J. Periodontol. 63(9):729–735, 1992.

    Article  CAS  PubMed  Google Scholar 

  25. Olivares, A. L., and D. Lacroix. Simulation of cell seeding within a three-dimensional porous scaffold: a fluid-particle analysis. Tissue Eng. C 18(8):624–631, 2012.

    Article  CAS  Google Scholar 

  26. Papadimitropoulos, A., S. A. Riboldi, B. Tonnarelli, E. Piccinini, M. A. Woodruff, D. W. Hutmacher, and I. Martin. A collagen network phase improves cell seeding of open-pore structure scaffolds under perfusion. J. Tissue Eng. Regen. Med. 7(3):183–191, 2013.

    Article  CAS  PubMed  Google Scholar 

  27. Park, J., S. Bauer, K. A. Schlegel, F. W. Neukam, K. von der Mark, and P. Schmuki. TiO2 nanotube surfaces: 15 nm—an optimal length scale of surface topography for cell adhesion and differentiation. Small 5(6):666–671, 2009.

    Article  CAS  PubMed  Google Scholar 

  28. Park, J., S. Bauer, P. Schmuki, and K. von der Mark. Narrow window in nanoscale dependent activation of endothelial cell growth and differentiation on TiO2 nanotube surfaces. Nano Lett. 9(9):3157–3164, 2009.

    Article  CAS  PubMed  Google Scholar 

  29. Pfister, A., R. Landers, A. Laib, U. Hubner, R. Schmelzeisen, and R. Mulhaupt. Biofunctional rapid prototyping for tissue-engineering applications: 3D bioplotting versus 3D printing. J. Polym. Sci. A 42(3):624–638, 2004.

    Article  CAS  Google Scholar 

  30. Rose, F. R., L. A. Cyster, D. M. Grant, C. A. Scotchford, S. M. Howdle, and K. M. Shakesheff. In vitro assessment of cell penetration into porous hydroxyapatite scaffolds with a central aligned channel. Biomaterials 25(24):5507–5514, 2004.

    Article  CAS  PubMed  Google Scholar 

  31. Ryu, H. S., H. J. Youn, K. S. Hong, B. S. Chang, C. K. Lee, and S. S. Chung. An improvement in sintering property of beta-tricalcium phosphate by addition of calcium pyrophosphate. Biomaterials 23(3):909–914, 2002.

    Article  CAS  PubMed  Google Scholar 

  32. Sanchez-Salcedo, S., A. Nieto, and M. Vallet-Regi. Hydroxyapatite/beta-tricalcium phosphate/agarose macroporous scaffolds for bone tissue engineering. Chem. Eng. J. 137(1):62–71, 2008.

    Article  CAS  Google Scholar 

  33. Schmittgen, T. D., B. A. Zakrajsek, A. G. Mills, V. Gorn, M. J. Singer, and M. W. Reed. Quantitative reverse transcription-polymerase chain reaction to study mRNA decay: comparison of endpoint and real-time methods. Anal. Biochem. 285(2):194–204, 2000.

    Article  CAS  PubMed  Google Scholar 

  34. Schumacher, M., F. Uhl, R. Detsch, U. Deisinger, and G. Ziegler. Static and dynamic cultivation of bone marrow stromal cells on biphasic calcium phosphate scaffolds derived from an indirect rapid prototyping technique. J. Mater. Sci. Mater. Med. 21(11):3039–3048, 2010.

    Article  CAS  PubMed  Google Scholar 

  35. Sobral, J. M., S. G. Caridade, R. A. Sousa, J. F. Mano, and R. L. Reis. Three-dimensional plotted scaffolds with controlled pore size gradients: effect of scaffold geometry on mechanical performance and cell seeding efficiency. Acta Biomater. 7(3):1009–1018, 2011.

    Article  CAS  PubMed  Google Scholar 

  36. Wang, H. Y., D. T. K. Kwok, M. Xu, H. G. Shi, Z. W. Wu, W. Zhang, and P. K. Chu. Tailoring of mesenchymal stem cells behavior on plasma-modified polytetrafluoroethylene. Adv. Mater. 24(25):3315–3324, 2012.

    Article  CAS  PubMed  Google Scholar 

  37. Wendt, D., A. Marsano, M. Jakob, M. Heberer, and I. Martin. Oscillating perfusion of cell suspensions through three-dimensional scaffolds enhances cell seeding efficiency and uniformity. Biotechnol. Bioeng. 84(2):205–214, 2003.

    Article  CAS  PubMed  Google Scholar 

  38. Zhao, F., and T. Ma. Perfusion bioreactor system for human mesenchymal stem cell tissue engineering: dynamic cell seeding and construct development. Biotechnol. Bioeng. 91(4):482–493, 2005.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Heon Goo Lee (Columbia University, NY), Jaeryong Ko (Vassar College, NY), Phillip Lim (Johns Hopkins University, MD), Jae-Sung Kwon, M.D. (Yonsei University, Korea), and Kang-Sik Lee, Ph.D. (ASAN Medical Center, Korea) for their helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong-Keun Lee.

Additional information

Associate Editor Smadar Cohen oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hong, MH., Kim, SM., Om, JY. et al. Seeding Cells on Calcium Phosphate Scaffolds Using Hydrogel Enhanced Osteoblast Proliferation and Differentiation. Ann Biomed Eng 42, 1424–1435 (2014). https://doi.org/10.1007/s10439-013-0926-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-013-0926-z

Keywords

Navigation