Abbitt, K. B., and G. B. Nash. Rheological properties of the blood influencing selectin-mediated adhesion of flowing leukocytes. Am. J. Physiol. 285:H229–H240, 2003.
CAS
Google Scholar
Abkarian, M., M. Faivre, and A. Viallat. Swinging of red blood cells under shear flow. Phys. Rev. Lett. 98:188302, 2007.
PubMed
Google Scholar
Abkarian, M., M. Faivre, R. Horton, K. Smistrup, C. A. Best-Popescu, and H. A. Stone. Cellular-scale hydrodynamics. Biomed. Mater. 3:034011, 2008.
PubMed
Google Scholar
Abkarian, M., C. Lartigue, and A. Viallat. Tank treading and unbinding of deformable vesicles in shear flow: determination of the lift force. Phys. Rev. Lett. 88:068103, 2002.
PubMed
Google Scholar
Alizadehrad, D., Y. Imai, K. Nakaaki, T. Ishikawa, and T. Yamaguchi. Quantification of red blood cell deformation at high-hematocrit blood flow in microvessels. J. Biomech. 45:2684–2689, 2012.
PubMed
Google Scholar
Allen, M. P., and D. J. Tildesley. Computer Simulation of Liquids. New York: Clarendon Press, 1987.
Google Scholar
AlMomani, T., H. S. Udaykumar, J. S. Marshall, and K. B. Chandran. Micro-scale dynamic simulation of erythrocyte–platelet interaction in blood flow. Ann. Biomed. Eng. 36:905–920, 2008.
CAS
PubMed
Google Scholar
Antia, M., T. Herricks, and P. K. Rathod. Microfluidic modeling of cell–cell interactions in malaria pathogenesis. PLoS Pathog. 3:939–945, 2007.
CAS
Google Scholar
Bagchi, P. Mesoscale simulation of blood flow in small vessels. Biophys. J. 92:1858–1877, 2007.
CAS
PubMed Central
PubMed
Google Scholar
Bagchi, P., and R. M. Kalluri. Dynamic rheology of a dilute suspension of elastic capsules: effect of capsule tank-treading, swinging and tumbling. J. Fluid Mech. 669:498–526, 2011.
Google Scholar
Bagchi, P., A. S. Popel, and P. C. Johnson. Computational fluid dynamic simulation of aggregation of deformable cells in a shear flow. J. Biomech. Eng. 127:1070–1080, 2005.
PubMed
Google Scholar
Bagge, U., and R. Karlsson. Maintenance of white blood cell margination at the passage through small venular junctions. Microvasc. Res. 20:92–95, 1980.
CAS
PubMed
Google Scholar
Bäumler, H., E. Donath, A. Krabi, W. Knippel, H. Budde, and A. Kiesewetter. Electrophoresis of human red blood cells and platelets: evidence for depletion of dextran. Biorheology 33:333–351, 1996.
PubMed
Google Scholar
Beck, W. S. (ed.). Hematology, 5th ed. Cambridge: MIT Press, 1991.
Bow, H., I. V. Pivkin, M. Diez-Silva, S. J. Goldfless, M. Dao, J. C. Niles, S. Suresh, and J. Han. A microfabricated deformability-based flow cytometer with application to malaria. Lab Chip 11:1065–1073, 2011.
CAS
PubMed Central
PubMed
Google Scholar
Brooks, D. E. The effect of neutral polymers on the electrokinetic potential of cells and other charged particles. J. Colloid Interface Sci. 43:700–713, 1973.
CAS
Google Scholar
Bugliarello, G., and J. Sevilla. Velocity distribution and other characteristics of steady and pulsatile blood flow in fine glass tubes. Biorheology 7:85–107, 1970.
CAS
PubMed
Google Scholar
Byun, H. S., T. Hillman, J. Higgins, M. Diez-Silva, Z. Peng, M. Dao, R. Dasari, S. Suresh, and Y.-K. Park. Optical measurements of biomechanical properties of individual erythrocytes from a sickle patient. Acta Biomater. 8:4130–4138, 2012.
PubMed Central
PubMed
Google Scholar
Cantat, I., and C. Misbah. Lift force and dynamical unbinding of adhering vesicles under shear flow. Phys. Rev. Lett. 83:880–883, 1999.
CAS
Google Scholar
Casson, N. Rheology of Disperse Systems. New York: Pergamon Press, 1992.
Google Scholar
Chaudhuri, O., S. Parekh, W. Lam, and D. Fletcher. Combined atomic force microscopy and side-view optical imaging for mechanical studies of cells. Nat. Methods 6:383–387, 2009.
CAS
PubMed Central
PubMed
Google Scholar
Chien, S., and K.-M. Jan. Ultrastructural basis of the mechanism of rouleaux formation. Microvasc. Res. 5:155–166, 1973.
CAS
PubMed
Google Scholar
Chien, S., S. Usami, R. J. Dellenback, M. I. Gregersen, L. B. Nanninga, and N. M. Guest. Blood viscosity: influence of erythrocyte aggregation. Science 157:829–831, 1967.
Google Scholar
Chien, S., S. Usami, R. J. Kellenback, and M. I. Gregersen. Shear-dependent interaction of plasma proteins with erythrocytes in blood rheology. Am. J. Physiol. 219:143–153, 1970.
CAS
PubMed
Google Scholar
Chien, S., S. Usami, H. M. Taylor, J. L. Lundberg, and M. I. Gregersen. Effects of hematocrit and plasma proteins on human blood rheology at low shear rates. J. Appl. Physiol. 21:81–87, 1996.
Google Scholar
Clausen, J. R., D. A. Reasor, Jr., and C. K. Aidun. The rheology and microstructure of concentrated non-colloidal suspensions of deformable capsules. J. Fluid Mech. 685:202–234, 2011.
Google Scholar
Cokelet, G., E. W. Merrill, E. R. Gilliland, H. Shin, A. Britten, and J. R. E. Wells. The rheology of human blood-measurement near and at zero shear rate. Trans. Soc. Rheol. 7:303–317, 1963.
Google Scholar
Cokelet, G. R., and H. L. Goldsmith. Decreased hydrodynamic resistance in the two-phase flow of blood through small vertical tubes at low flow rates. Circ. Res. 68:1–17, 1991.
CAS
PubMed
Google Scholar
Copley, A. L., C. R. Huang, and R. G. King. Rheogoniometric studies of whole human blood at shear rates from 1,000-0.0009 sec−1. Part I. Experimental findings. Biorheology 10:17–22, 1973.
CAS
PubMed
Google Scholar
Cranston, H. A., C. W. Boylan, G. L. Carroll, S. P. Sutera, J. R. Williamson, I. Y. Gluzman, and D. J. Krogstad. Plasmodium falciparum maturation abolishes physiologic red cell deformability. Science 223:400–403, 1984.
CAS
PubMed
Google Scholar
Cravalho, P., M. Diez-Silva, H. Chen, M. Dao, and S. Suresh. Cytoadherence of erythrocytes invaded by Plasmodium falciparum: quantitative contact-probing of a human malaria receptor. Acta Biomater. 9:6349–6359, 2013.
Google Scholar
Crowl, L., and A. L. Fogelson. Computational model of whole blood exhibiting lateral platelet motion induced by red blood cells. Int. J. Numer. Methods Biomed. Eng. 26:471–487, 2010.
Google Scholar
Crowl, L., and A. L. Fogelson. Analysis of mechanisms for platelet near-wall excess under arterial blood flow conditions. J. Fluid Mech. 676:348–375, 2011.
Google Scholar
Dao, M., J. Li, and S. Suresh. Molecularly based analysis of deformation of spectrin network and human erythrocyte. Mater. Sci. Eng. C 26:1232–1244, 2006.
CAS
Google Scholar
Dao, M., C. T. Lim, and S. Suresh. Mechanics of the human red blood cell deformed by optical tweezers. J. Mech. Phys. Solids 51:2259–2280, 2003.
Google Scholar
Diez-Silva, M., M. Dao, J. Han, C.-T. Lim, and S. Suresh. Shape and biomechanical characteristics of human red blood cells in health and disease. MRS Bull. 35:382–388, 2010.
CAS
PubMed Central
PubMed
Google Scholar
Diez-Silva, M., Y.-K. Park, S. Huang, H. Bow, O. Mercereau-Puijalon, G. Deplaine, C. Lavazec, S. Perrot, S. Bonnefoy, M. S. Feld, J. Han, M. Dao, and S. Suresh. Pf155/RESA protein influences the dynamic microcirculatory behavior of ring-stage Plasmodium falciparum infected red blood cells. Sci. Rep. 2:614, 2012.
PubMed Central
PubMed
Google Scholar
Discher, D. E., D. H. Boal, and S. K. Boey. Simulations of the erythrocyte cytoskeleton at large deformation. II. Micropipette aspiration. Biophys. J. 75:1584–1597, 1998.
CAS
PubMed Central
PubMed
Google Scholar
Discher, D. E., N. Mohandas, and E. A. Evans. Molecular maps of red cell deformation: hidden elasticity and in situ connectivity. Science 266:1032–1035, 1994.
CAS
PubMed
Google Scholar
Doddi, S. K., and P. Bagchi. Lateral migration of a capsule in a plane Poiseuille flow in a channel. Int. J. Multiphase Flow 34:966–986, 2008.
CAS
Google Scholar
Doddi, S. K., and P. Bagchi. Three-dimensional computational modeling of multiple deformable cells flowing in microvessels. Phys. Rev. E 79:046318, 2009.
Google Scholar
Dupin, M. M., I. Halliday, C. M. Care, L. Alboul, and L. L. Munn. Modeling the flow of dense suspensions of deformable particles in three dimensions. Phys. Rev. E 75:066707, 2007.
Google Scholar
Dupin, M. M., I. Halliday, C. M. Care, and L. L. Munn. Lattice boltzmann modeling of blood cell dynamics. Int. J. Comput. Fluid Dyn. 22:481–492, 2008.
Google Scholar
Dzwinel, W., K. Boryczko, and D. A. Yuen. A discrete-particle model of blood dynamics in capillary vessels. J. Colloid Interface Sci. 258:163–173, 2003.
CAS
PubMed
Google Scholar
Eckstein, E. C., A. W., and F. J. Millero III. Conditions for the occurrence of large near-wall excesses of small particles during blood flow. Microvasc. Res. 36:31–39, 1988.
CAS
PubMed
Google Scholar
Eggleton, C. D., and A. S. Popel. Large deformation of red blood cell ghosts in a simple shear flow. Phys. Fluids 10:1834, 1998.
CAS
Google Scholar
Enden, G., and A. S. Popel. A numerical study of plasma skimming in small vascular bifurcations. J. Biomech. Eng. 116:79–88, 1994.
CAS
PubMed
Google Scholar
Enderle, T., T. Ha, D. F. Ogletree, D. S. Chemla, C. Magowan, S. Weiss. Membrane specific mapping and colocalization of malarial and host skeletal proteins in the Plasmodium falciparum infected erythrocyte by dual-color near-field scanning optical microscopy. Proc. Natl Acad. Sci. U.S.A. 94:520–525, 1997.
CAS
PubMed Central
PubMed
Google Scholar
Ermak, D. L., and J. A. McCammon. Brownian dynamics with hydrodynamic interactions. J. Chem. Phys. 69:1352–1360, 1978.
CAS
Google Scholar
Espanol, P., and M. Revenga. Smoothed dissipative particle dynamics. Phys. Rev. E 67:026705, 2003.
Google Scholar
Espanol, P., and P. Warren. Statistical mechanics of dissipative particle dynamics. Europhys. Lett. 30:191–196, 1995.
CAS
Google Scholar
Evans, E. A., and R. Skalak. Mechanics and Thermodynamics of Biomembranes. Boca Raton, FL: CRC Press, 1980.
Fahraeus, R. The suspension stability of blood. Physiol. Rev 9:241–274, 1929.
Google Scholar
Fahraeus, R. The influence of the rouleau formation of the erythrocytes on the rheology of the blood. Acta Med. Scand. 161:151–165, 1958.
CAS
PubMed
Google Scholar
Fahraeus, R., and T. Lindqvist. Viscosity of blood in narrow capillary tubes. Am. J. Phys. 96:562–568, 1931.
CAS
Google Scholar
Fedosov, D. A., B. Caswell, and G. E. Karniadakis. A multiscale red blood cell model with accurate mechanics, rheology, and dynamics. Biophys. J. 98:2215–2225, 2010.
CAS
PubMed Central
PubMed
Google Scholar
Fedosov, D. A., B. Caswell, and G. E. Karniadakis. Systematic coarse-graining of spectrin-level red blood cell models. Comput. Methods Appl. Mech. Eng. 199:1937–1948, 2010.
Google Scholar
Fedosov, D. A., B. Caswell, and G. E. Karniadakis. Wall shear stress-based model for adhesive dynamics of red blood cells in malaria. Biophys. J. 100:2084–2093, 2011.
CAS
PubMed Central
PubMed
Google Scholar
Fedosov, D. A., B. Caswell, A. S. Popel, and G. E. Karniadakis. Blood flow and cell-free layer in microvessels. Microcirculation 17:615–628, 2010.
PubMed Central
PubMed
Google Scholar
Fedosov, D. A., B. Caswell, S. Suresh, and G. E. Karniadakis. Quantifying the biophysical characteristics of Plasmodium falciparum-parasitized red blood cells in microcirculation. Proc. Natl Acad. Sci. U.S.A. 108:35–39, 2011.
CAS
PubMed Central
PubMed
Google Scholar
Fedosov, D. A., J. Fornleitner, and G. Gompper. Margination of white blood cells in microcapillary flow. Phys. Rev. Lett. 108:028104, 2012.
PubMed
Google Scholar
Fedosov, D. A., H. Noguchi, and G. Gompper. Multiscale modeling of blood flow: from single cells to blood rheology. Biomech. Model. Mechanobiol., 2013. DOI:10.1007/s10237-013-0497-9.
Fedosov, D. A., W. Pan, B. Caswell, G. Gompper, and G. E. Karniadakis. Predicting human blood viscosity in silico. Proc. Natl Acad. Sci. U.S.A. 108:11772–11777, 2011.
CAS
PubMed Central
PubMed
Google Scholar
Finger, E. B., K. D. Puri, R. Alon, M. B. Lawrence, U. H. von Andrian, and T. A. Springer. Adhesion through L-selectin requires a threshold hydrodynamic shear. Nature (London) 379:266–269, 1996.
CAS
Google Scholar
Firrell, J. C., and H. H. Lipowsky. Leukocyte margination and deformation in mesenteric venules of rat. Am. J. Physiol. 256:H1667–H1674, 1989.
CAS
PubMed
Google Scholar
Fischer, T. M. Shape memory of human red blood cells. Biophys. J. 86:3304–3313, 2004.
CAS
PubMed Central
PubMed
Google Scholar
Freund, J. B. Leukocyte margination in a model microvessel. Phys. Fluids 19:023301, 2007.
Google Scholar
Freund, J. B., and M. M. Orescanin. Cellular flow in a small blood vessel. J. Fluid Mech. 671:466–490, 2011.
Google Scholar
Fung, Y. C. Biomechanics: Mechanical Properties of Living Tissues, 2nd ed. New York: Springer, 1993.
Gaehtgens, P., C. Dührssen, and K. H. Albrecht. Motion, deformation, and interaction of blood cells and plasma during flow through narrow capillary tubes. Blood Cells 6:799–817, 1980.
CAS
PubMed
Google Scholar
Gidaspow, D., and J. Huang. Kinetic theory based model for blood flow and its viscosity. Ann. Biomed. Eng. 38:1534–1545, 2009.
Google Scholar
Goldsmith, H. L., G. R. Cokelet, and P. Gaehtgens. Robin Fahraeus: evolution of his concepts in cardiovascular physiology. Am. J. Physiol. 257:H1005–H1015, 1989.
CAS
PubMed
Google Scholar
Goldsmith, H. L., and S. Spain. Margination of leukocytes in blood flow through small tubes. Microvasc. Res. 27:204–222, 1984.
CAS
PubMed
Google Scholar
Gompper, G., T. Ihle, D. M. Kroll, and R. G. Winkler. Multi-particle collision dynamics: a particle-based mesoscale simulation approach to the hydrodynamics of complex fluids. Adv. Polym. Sci. 221:1–87, 2009.
CAS
Google Scholar
Groot, R. D., and P. B. Warren. Dissipative particle dynamics: bridging the gap between atomistic and mesoscopic simulation. J. Chem. Phys. 107:4423–4435, 1997.
CAS
Google Scholar
Henon, S., G. Lenormand, A. Richert, and F. Gallet. A new determination of the shear modulus of the human erythrocyte membrane using optical tweezers. Biophys. J. 76:1145–1151, 1999.
CAS
PubMed Central
PubMed
Google Scholar
Higgins, J. M., D. T. Eddington, S. N. Bhatia, and L. Mahadevan. Sickle cell vasoocclusion and rescue in a microfluidic device. Proc. Natl Acad. Sci. U.S.A. 104:20496–20500, 2007.
CAS
PubMed Central
PubMed
Google Scholar
Holm, S. H., J. P. Beech, M. P. Barrett, and J. O. Tegenfeldt. Separation of parasites from human blood using deterministic lateral displacement. Lab Chip 11:1326–1332, 2011.
CAS
PubMed
Google Scholar
Hoogerbrugge, P. J., and J. M. V. A. Koelman. Simulating microscopic hydrodynamic phenomena with dissipative particle dynamics. Europhys. Lett. 19:155–160, 1992.
Google Scholar
Hou, H. W., A. A. S. Bhagat, A. G. L. Chong, P. Mao, K. S. W. Tan, J. Han, C. T. Lim. Deformability based cell margination—a simple microfluidic design for malaria-infected erythrocyte separation. Lab Chip 10:2605–2613, 2010.
CAS
PubMed
Google Scholar
Iordan A, Duperray A, Verdier C (2008) Fractal approach to the rheology of concentrated suspensions. Phys. Rev. E 77:011911
CAS
Google Scholar
Itoh, T., S. Chien, and S. Usami. Effects of hemoglobin concentration on deformability of individual sickle cells after deoxygenation. Blood 85:2245–2253, 1995.
CAS
PubMed
Google Scholar
Jain, A., and L. L. Munn. Determinants of leukocyte margination in rectangular microchannels. PLoS ONE 4:e7104, 2009.
PubMed Central
PubMed
Google Scholar
Janoschek, F., F. Toschii, and J. Harting. Simplified particulate model for coarse-grained hemodynamics simulations. Phys. Rev. E 82:056710, 2010.
CAS
Google Scholar
Ju, M., S. S. Ye, B. Namgung, S. Cho, H. T. Low, H. L. Leo, and S. Kim. A review of numerical methods for red blood cell flow simulation. Computer Methods Biomech. Biomed. Eng., 2013. DOI:10.1080/10255842.2013.783574
Kaul, D. K., M. E. Fabry, P. Windisch, S. Baez, and R. L. Nagel. Erythrocytes in sickle-cell-anemia are heterogeneous in their rheological and hemodynamic characteristics. J. Clin. Invest. 72:22–31, 1983.
CAS
PubMed Central
PubMed
Google Scholar
Kaul, D. K., and H. Xue. Rate of deoxygenation and rheologic behavior of blood in sickle cell anemia. Blood 77:1353–1361, 1991.
CAS
PubMed
Google Scholar
Kim, S., L. R. Long, A. S. Popel, M. Intaglietta, and P. C. Johnson. Temporal and spatial variations of cell-free layer width in arterioles. Am. J. Physiol. 293:H1526–H1535, 2007.
CAS
Google Scholar
Kim, S., P. K. Ong, O. Yalcin, M. Intaglietta, and P. C. Johnson. The cell-free layer in microvascular blood flow. Biorheology 46:181–189, 2009.
CAS
PubMed
Google Scholar
Kumar, A., and M. D. Graham. Margination and segregation in confined flows of blood and other multicomponent suspensions. Soft Matter 8:10536–10548, 2012.
CAS
Google Scholar
Kumar, A., and M. D. Graham. Mechanism of margination in confined flows of blood and other multicomponent suspensions. Phys. Rev. Lett. 109:108102, 2012.
PubMed
Google Scholar
LaCelle, P. L. Oxygen delivery to muscle cells during capillary vascular occlusion by sickle erythrocytes. Blood Cells 3:263–272, 1977.
Google Scholar
Lei, H., D. A. Fedosov, B. Caswell, and G. E. Karniadakis. Blood flow in small tubes: quantifying the transition to the non-continuum regime. J. Fluid Mech. 722:214–239, 2013.
CAS
Google Scholar
Lei, H., and G. E. Karniadakis. Quantifying the rheological and hemodynamic characteristics of sickle cell anemia. Biophys. J. 102:185–194, 2012.
CAS
PubMed Central
PubMed
Google Scholar
Lei, H., and G. E. Karniadakis. Probing vaso-occlusion phenomena in sickle cell anemia via mesoscopic simulations. Proc. Natl Acad. Sci. U.S.A. 110:11326–11330, 2013.
CAS
PubMed Central
PubMed
Google Scholar
Li J, Dao M, Lim CT, Suresh S (2005) Spectrin-level modeling of the cytoskeleton and optical tweezers stretching of the erythrocyte. Biophys. J. 88:3707–3719
CAS
PubMed Central
PubMed
Google Scholar
Li, X., P. M. Vlahovska, and G. E. Karniadakis. Continuum- and particle-based modeling of shapes and dynamics of red blood cells in health and disease. Soft Matter 9:28–37, 2013.
CAS
PubMed Central
PubMed
Google Scholar
Liu, Y., and W. K. Liu. Rheology of red blood cell aggregation by computer simulation. J. Comput. Phys. 220:139–154, 2006.
Google Scholar
Lucy, L. B. A numerical approach to testing the fission hypothesis. Astronom. J. 82:1013–1024, 1977.
Google Scholar
MacMeccan, R. M., J. R. Clausen, G. P. Neitzel, and C. K. Aidun. Simulating deformable particle suspensions using a coupled lattice-Boltzmann and finite-element method. J. Fluid Mech. 618:13–39, 2009.
Google Scholar
Maeda, N., Y. Suzuki, J. Tanaka, and N. Tateishi. Erythrocyte flow and elasticity of microvessels evaluated by marginal cell-free layer and flow resistance. Am. J. Physiol. 271:H2454–H2461, 1996.
CAS
PubMed
Google Scholar
Malevanets, A., and R. Kapral. Mesoscopic model for solvent dynamics. J. Chem. Phys. 110:8605–8613, 1999.
CAS
Google Scholar
Mattice, W. L., and U. W. Suter. Conformational Theory of Large Molecules: The Rotational Isomeric State Model in Macromolecular Systems. New York: Wiley Interscience, 1994.
Google Scholar
McWhirter, J. L., H. Noguchi, and G. Gompper. Flow-induced clustering and alignment of vesicles and red blood cells in microcapillaries. Proc. Natl Acad. Sci. U.S.A. 106:6039–6043, 2009.
CAS
PubMed Central
PubMed
Google Scholar
Melchionna, S. A model for red blood cells in simulations of large-scale blood flows. Macromol. Theory Simul. 20:548–561, 2011.
CAS
Google Scholar
Merrill, E. W., E. R. Gilliland, G. Cokelet, H. Shin, A. Britten, J. R. E. Wells. Rheology of human blood near and at zero flow. Biophys. J. 3:199–213, 1963.
CAS
PubMed Central
PubMed
Google Scholar
Merrill, E. W., E. R. Gilliland, T. S. Lee, and E. W. Salzman. Blood rheology: effect of fibrinogen deduced by addition. Circ. Res. 18:437–446, 1966.
CAS
PubMed
Google Scholar
Messlinger, S., B. Schmidt, H. Noguchi, and G. Gompper. Dynamical regimes and hydrodynamic lift of viscous vesicles under shear. Phys. Rev. E 80:011901, 2009.
Google Scholar
Mills, J. P., M. Diez-Silva, D. J. Quinn, M. Dao, M. J. Lang, K. S. W. Tan, C. T. Lim, G. Milon, P. H. David, O. Mercereau-Puijalon, S. Bonnefoy, and S. Suresh. Effect of plasmodial RESA protein on deformability of human red blood cells harboring Plasmodium falciparum. Proc. Natl Acad. Sci. U.S.A. 104:9213–9217, 2007.
CAS
PubMed Central
PubMed
Google Scholar
Monaghan, J. J. Smoothed particle hydrodynamics. Rep. Prog. Phys. 68:1703–1759, 2005.
Google Scholar
Murata, T. Effects of sedimentation of small red blood cell aggregates on blood flow in narrow horizontal tubes. Biorheology 33:267–283, 1996.
CAS
PubMed
Google Scholar
Neu, B., and H. J. Meiselman. Depletion-mediated red blood cell aggregation in polymer solutions. Biophys. J. 83:2482–2490, 2002.
CAS
PubMed Central
PubMed
Google Scholar
Noguchi, H., and G. Gompper. Fluid vesicles with viscous membranes in shear flow. Phys. Rev. Lett. 93:258102, 2004.
PubMed
Google Scholar
Noguchi, H., and G. Gompper. Dynamics of fluid vesicles in shear flow: effect of the membrane viscosity and thermal fluctuations. Phys. Rev. E 72:011901, 2005.
Google Scholar
Noguchi, H., and G. Gompper. Shape transitions of fluid vesicles and red blood cells in capillary flows. Proc. Natl Acad. Sci. U.S.A. 102:14159–14164, 2005.
CAS
PubMed Central
PubMed
Google Scholar
Pan, W., B. Caswell, and G. E. Karniadakis. A low-dimensional model for the red blood cell. Soft Matter 6:4366–4376, 2010.
CAS
Google Scholar
Pan, W., D. A. Fedosov, B. Caswell, and G. E. Karniadakis. Predicting dynamics and rheology of blood flow: a comparative study of multiscale and low-dimensional models of red blood cells. Microvasc. Res. 82:163–170, 2011.
PubMed Central
PubMed
Google Scholar
Park, Y. K., M. Diez-Silva, G. Popescu, G. Lykotrafitis, W. Choi, M. S. Feld, and S. Suresh. Refractive index maps and membrane dynamics of human red blood cells parasitized by Plasmodium falciparum. Proc. Natl Acad. Sci. U.S.A. 105:13730–13735, 2008.
CAS
PubMed Central
PubMed
Google Scholar
Pearson, M. J., and H. H. Lipowsky. Influence of erythrocyte aggregation on leukocyte margination in postcapillary venules of rat mesentery. Am. J. Physiol. 279:H1460–H1471, 2000.
CAS
Google Scholar
Peng, Z., X. Li, I. Pivkin, M. Dao, G. E. Karniadakis, and S. Suresh. Lipid-bilayer and cytoskeletal interactions in a red blood cell. Proc. Natl Acad. Sci. U.S.A. 110:13356–13361, 2013.
CAS
PubMed Central
PubMed
Google Scholar
Picart, C., J. M. Piau, and H. Galliard. Human blood shear yield stress and its hematocrit dependence. J. Rheol. 42:1–12, 1998.
CAS
Google Scholar
Pivkin, I. V., and G. E. Karniadakis. Accurate coarse-grained modeling of red blood cells. Phys. Rev. Lett. 101:118105, 2008.
PubMed
Google Scholar
Popel, A. S., and P. C. Johnson. Microcirculation and hemorheology. Annu. Rev. Fluid Mech. 37:43–69, 2005.
PubMed Central
PubMed
Google Scholar
Popescu, G., Y.-K. Park, R. R. Dasari, K. Badizadegan, and M. S. Feld. Coherence properties of red blood cell membrane motions. Phys. Rev. E 76:031902, 2007.
Google Scholar
Pozrikidis, C. Numerical simulation of cell motion in tube flow. Ann. Biomed. Eng. 33:165–178, 2005.
CAS
PubMed
Google Scholar
Pribush, A., D. Zilberman-Kravits, and N. Meyerstein. The mechanism of the dextran-induced red blood cell aggregation. Eur. Biophys. J. 36:85–94, 2007.
CAS
PubMed
Google Scholar
Pries, A. R., K. Ley, M. Claassen, and P. Gaehtgens. Red cell distribution at microvascular bifurcations. Microvasc. Res. 38:81–101, 1989.
CAS
PubMed
Google Scholar
Pries, A. R., D. Neuhaus, and P. Gaehtgens. Blood viscosity in tube flow: dependence on diameter and hematocrit. Am. J. Physiol. 263:H1770–H1778, 1992.
CAS
PubMed
Google Scholar
Pries, A. R., T. W. Secomb, and P. Gaehtgens. Structure and hemodynamics of microvascular networks: heterogeneity and correlations. Am. J. Physiol. 269:H1713–H1722, 1995.
CAS
PubMed
Google Scholar
Pries, A. R., T. W. Secomb, and P. Gaehtgens. Biophysical aspects of blood flow in the microvasculature. Cardiovasc. Res. 32:654–667, 1996.
CAS
PubMed
Google Scholar
Puig-de Morales-Marinkovic, M., K. T. Turner, J. P. Butler, J. J. Fredberg, and S. Suresh. Viscoelasticity of the human red blood cell. Am. J. Physiol. 293:C597–C605, 2007.
CAS
Google Scholar
Raventos-Suarez, C., D. Kaul, and R. Nagel. Membrane knobs are required for the microcirculatory obstruction induced by Plasmodium falciparum-infected erythrocytes. Proc. Natl Acad. Sci. U.S.A. 82:3829–3833, 1985.
CAS
PubMed Central
PubMed
Google Scholar
Reasor, Jr., D. A., M. Mehrabadi, D. N. Ku, and C. K. Aidun. Determination of critical parameters in platelet margination. Ann. Biomed. Eng. 41:238–249, 2013.
PubMed
Google Scholar
Reinke, W., P. Gaehtgens, and P. C. Johnson. Blood viscosity in small tubes: effect of shear rate, aggregation, and sedimentation. Am. J. Physiol. 253:H540–H547, 1987.
CAS
PubMed
Google Scholar
Rosenbluth, M., W. Lam, and D. Fletcher. Analyzing cell mechanics in hematologic diseases with microfluidic biophysical flow cytometry. Lab Chip 8:1062–1070, 2008.
CAS
PubMed
Google Scholar
Samsel, R. W., and A. S. Perelson. Kinetics of rouleau formation: I. A mass action approach with geometric features. Biophys. J. 37:493–514, 1982.
CAS
PubMed Central
PubMed
Google Scholar
Schmid-Schönbein, H., and R. E. Wells. Rheological properties of human erythrocytes and their influence upon the “anomalous” viscosity of blood. Ergeb. Physiol. Biol. Chem. Exper. Pharmakol. 63:146–219, 1971.
Google Scholar
Sharan, M., and A. S. Popel. A two-phase model for flow of blood in narrow tubes with increased effective viscosity near the wall. Biorheology 38:415–428, 2001.
CAS
PubMed
Google Scholar
Shelby, J. P., J. White, K. Ganesan, P. K. Rathod, and D. T. Chiu. A microfluidic model for single-cell capillary obstruction by Plasmodium falciparum-infected erythrocytes. Proc. Natl Acad. Sci. U.S.A. 100:14618–14622, 2003.
CAS
PubMed Central
PubMed
Google Scholar
Skalak, R., and P. I. Branemark. Deformation of red blood cells in capillaries. Science 164:717–719, 1969.
CAS
PubMed
Google Scholar
Skalak, R., S. R. Keller, and T. W. Secomb. Mechanics of blood flow. J. Biomech. Eng. 103:102–115, 1981.
CAS
PubMed
Google Scholar
Skotheim, J. M., and T. W. Secomb. Red blood cells and other nonspherical capsules in shear flow: oscillatory dynamics and the tank-treading-to-tumbling transition. Phys. Rev. Lett. 98:078301, 2007.
CAS
PubMed
Google Scholar
Springer, T. A. Traffic signals on endothelium for lymphocyte recirculation and leukocyte emigration. Annu. Rev. Physiol. 57:827–872, 1995.
CAS
PubMed
Google Scholar
Steffen, P., C. Verdier, and C. Wagner. Quantification of depletion-induced adhesion of red blood cells. Phys. Rev. Lett. 110:018102, 2013.
CAS
PubMed
Google Scholar
Succi, S. The Lattice Boltzmann Equation for Fluid Dynamics and Beyond. Oxford: Oxford University Press, 2001.
Google Scholar
Sun, C., C. Migliorini, and L. L. Munn. Red blood cells initiate leukocyte rolling in postcapillary expansions: a lattice Boltzmann analysis. Biophys. J. 85:208–222, 2003.
CAS
PubMed Central
PubMed
Google Scholar
Suresh, S., J. Spatz, J. P. Mills, A. Micoulet, M. Dao, C. T. Lim, M. Beil, and T. Seufferlein. Connections between single-cell biomechanics and human disease states: gastrointestinal cancer and malaria. Acta Biomater. 1:15–30, 2005.
CAS
PubMed
Google Scholar
Suzuki, Y., N. Tateishi, M. Soutani, and N. Maeda. Deformation of erythrocytes in microvessels and glass capillaries: effect of erythrocyte deformability. Microcirculation 3:49–57, 1996.
CAS
PubMed
Google Scholar
Tangelder, G. J., H. C. Teirlinck, D. W. Slaaf, and R. S. Reneman. Distribution of blood platelets flowing in arterioles. Am. J. Physiol. 248:H318–H323, 1985.
CAS
PubMed
Google Scholar
Thurston, G. B. Viscoelastic properties of blood and blood analogs. In Advances in Hemodynamics and Hemorheology, Vol. 1, edited by T. V. How. Greenwich, CT: JAI Press, 1996, pp. 1–30.
Tilles, A. W., and E. C. Eckstein. The near-wall excess of platelet-sized particles in blood flow: its dependence on hematocrit and wall shear rate. Microvasc. Res. 33:211–223, 1987.
CAS
PubMed
Google Scholar
Tokarev, A. A., A. A. Butylin, and F. I. Ataullakhanov. Platelet adhesion from shear blood flow is controlled by near-wall rebounding collisions with erythrocytes. Biophys. J. 100:799–808, 2011.
CAS
PubMed Central
PubMed
Google Scholar
Tokarev, A. A., A. A. Butylin, E. A. Ermakova, E. E. Shnol, G. P. Panasenko, and F. I. Ataullakhanov. Finite platelet size could be responsible for platelet margination effect. Biophys. J. 101:1835–1843, 2011
CAS
PubMed Central
PubMed
Google Scholar
Tomaiuolo, G., V. Preziosi, M. Simeone, S. Guido, R. Ciancia, V. Martinelli, C. Rinaldi, B. Rotoli. A methodology to study the deformability of red blood cells flowing in microcapillaries in vitro. Ann Ist Super Sanita 43:186–192, 2007.
PubMed
Google Scholar
Tomaiuolo, G., M. Simeone, V. Martinelli, B. Rotoli, and S. Guido. Red blood cell deformation in microconfined flow. Soft Matter 5:3736–3740, 2009.
CAS
Google Scholar
Tousia, N., B. Wang, K. Pant, M. F. Kiani, and B. Prabhakarpandian. Preferential adhesion of leukocytes near bifurcations is endothelium independent. Microvasc. Res. 80:384–388, 2010.
Google Scholar
Uijttewaal, W. S., E. J. Nijhof, P. J. Bronkhorst, E. Den Hartog, and R. M. Heethaar. Near-wall excess of platelets induced by lateral migration of erythrocytes in flowing blood. Am. J. Physiol. 264:H1239–H1244, 1993.
CAS
PubMed
Google Scholar
Wang,T., T.-W. Pan, Z. W. Xing, and R. Glowinski. Numerical simulation of rheology of red blood cell rouleaux in microchannels. Phys. Rev. E 79:041916, 2009.
CAS
Google Scholar
Waugh, R., and E. A. Evans. Thermoelasticity of red blood cell membrane. Biophys. J. 26:115–131, 1979.
CAS
PubMed Central
PubMed
Google Scholar
Weinbaum, S., J. M. Tarbell, and E. R. Damiano. The structure and function of the endothelial glycocalyx layer. Annu. Rev. Biomed. Eng. 9:121–167, 2007.
CAS
PubMed
Google Scholar
Wendt, J. F. (ed.). Computational Fluid Dynamics, 3rd ed. Berlin: Springer, 2009.
Woldhuis, B., G. J. Tangelder, D. W. Slaaf, and R. S. Reneman. Concentration profile of blood platelets differs in arterioles and venules. Am. J. Physiol. 262:H1217–H1223, 1992.
CAS
PubMed
Google Scholar
Yamaguchi, S., T. Yamakawa, and H. Niimi. Cell-free plasma layer in cerebral microvessels. Biorheology 29:251–260, 1992.
CAS
PubMed
Google Scholar
Zhang, J., P. C. Johnson, and A. S. Popel. Red blood cell aggregation and dissociation in shear ows simulated by lattice Boltzmann method. J. Biomech. 41:47–55, 2008.
PubMed Central
PubMed
Google Scholar
Zhao, H., A. H. G. Isfahani, L. N. Olson, and J. B. Freund. Molecular dynamics simulations of tethered membranes with periodic boundary conditions. J. Comput. Phys. 229:3726–3744, 2010.
CAS
Google Scholar
Zhao, H., and E. S. G. Shaqfeh. Shear-induced platelet margination in a microchannel. Phys. Rev. E 83:061924, 2011.
Google Scholar
Zhao, H., E. S. G. Shaqfeh, and V. Narsimhan. Shear-induced particle migration and margination in a cellular suspension. Phys. Fluids 24:011902, 2012.
Google Scholar
Zhao, Q., L. G. Durand, L. Allard, and G. Cloutier. Effects of a sudden flow reduction on red blood cell rouleau formation and orientation using RF backscattered power. Ultrasound Med. Biol. 24:503–511, 1998.
Google Scholar