Skip to main content

Advertisement

Log in

Optical Systems for Point-of-care Diagnostic Instrumentation: Analysis of Imaging Performance and Cost

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

One of the key elements in point-of-care (POC) diagnostic test instrumentation is the optical system required for signal detection and/or imaging. Many tests which use fluorescence, absorbance, or colorimetric optical signals are under development for management of infectious diseases in resource limited settings, where the overall size and cost of the device is of critical importance. At present, high-performance lenses are expensive to fabricate and difficult to obtain commercially, presenting barriers for developers of in vitro POC tests or microscopic image-based diagnostics. We recently described a compact “hybrid” objective lens incorporating both glass and plastic optical elements, with a numerical aperture of 1.0 and field-of-view of 250 μm. This design concept may potentially enable mass-production of high-performance, low-cost optical systems which can be easily incorporated in the readout path of existing and emerging POC diagnostic assays. In this paper, we evaluate the biological imaging performance of these lens systems in three broad POC diagnostic application areas; (1) bright field microscopy of histopathology slides, (2) cytologic examination of blood smears, and (3) immunofluorescence imaging. We also break down the fabrication costs and draw comparisons with other miniature optical systems. The hybrid lenses provided images with quality comparable to conventional microscopy, enabling examination of neoplastic pathology and infectious parasites including malaria and cryptosporidium. We describe how these components can be produced at below $10 per unit in full-scale production quantities, making these systems well suited for use within POC diagnostic instrumentation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Arpa, A., G. Wetzstein, D. Lanman, and R. Raskar. Single lens off-chip cellphone microscopy. In: IEEE International Workshop on Projector-Camera Systems (PROCAMS), 2012.

  2. Barretto, R. P. J., B. Messerschmidt, and M. J. Schnitzer. In vivo fluorescence imaging with high resolution microlenses. Nat. Methods 6:511–512, 2009.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Behr, M. A., E. Kokoskin, T. W. Gyorkos, L. Cédilotte, G. M. Faubert, and J. D. MacLean. Laboratory diagnosis for Giardia lamblia infection: a comparison of microscopy, coprodiagnosis and serology. Can. J. Infect. Dis. 8:33–38, 1996.

    Google Scholar 

  4. Bray, F., and B. Møller. Predicting the future burden of cancer. Nat. Rev. Cancer 6:63–74, 2006.

    Article  CAS  PubMed  Google Scholar 

  5. Breslauer, D. N., R. N. Maamari, N. A. Switz, W. A. Lam, and D. A. Fletcher. Mobile phone based clinical microscopy for global health applications. PLoS ONE 4:e6320, 2009.

    Article  PubMed Central  PubMed  Google Scholar 

  6. Brun, R., J. Blum, F. Chappuis, and C. Burri. Human African trypanosomiasis. Lancet 375:148–159, 2010.

    Article  PubMed  Google Scholar 

  7. Camou, S., H. Fujita, and T. Fujii. PDMS 2D optical lens integrated with microfluidic channels: principle and characterization. Lab Chip 3:40–45, 2003.

    Article  CAS  PubMed  Google Scholar 

  8. Chalmers, R. M., and F. Katzer. Looking for Cryptosporidium: the application of advances in detection and diagnosis. Trends Parasitol. 29:237–251, 2013.

    Article  PubMed  Google Scholar 

  9. Chidley, M. D., K. D. Carlson, R. R. Richards-Kortum, and M. R. Descour. Design, assembly, and optical bench testing of a high-numerical-aperture miniature injection-molded objective for fiber-optic confocal reflectance microscopy. Appl. Opt. 45:2545–2554, 2006.

    Article  PubMed  Google Scholar 

  10. Chin, C. D., V. Linder, and S. K. Sia. Lab-on-a-chip devices for global health: past studies and future opportunities. Lab Chip 7:41–57, 2007.

    Article  CAS  PubMed  Google Scholar 

  11. Chinowsky, T. M., M. S. Grow, K. S. Johnston, K. Nelson, T. Edwards, E. Fu, and P. Yager. Compact, high performance surface plasmon resonance imaging system. Biosens. Bioelectron. 22:2208–2215, 2007.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Farmer, P., J. Frenk, F. M. Knaul, L. N. Shulman, G. Alleyne, L. Armstrong, R. Atun, D. Blayney, L. Chen, R. Feachem, M. Gospodarowicz, J. Gralow, S. Gupta, A. Langer, J. Lob-Levyt, C. Neal, A. Mbewu, D. Mired, P. Piot, K. S. Reddy, J. D. Sachs, M. Sarhan, and J. R. Seffrin. Expansion of cancer care and control in countries of low and middle income: a call to action. Lancet 376:1186–1193, 2010.

    Article  PubMed  Google Scholar 

  13. Greenbaum, A., A. Feizi, N. Akbari, and A. Ozcan. Wide-field computational color imaging using pixel super-resolved on-chip microscopy. Opt. Express 10:12469–12483, 2013.

    Article  Google Scholar 

  14. Greenbaum, A., W. Luo, B. Khademhosseinieh, T.-W. Su, A. F. Coskun, and A. Ozcan. Increased space-bandwidth product in pixel super-resolved lensfree on-chip microscopy. Sci. Rep. 3:1717, 2013.

    Article  PubMed Central  PubMed  Google Scholar 

  15. Greenbaum, A., W. Luo, T.-W. Su, Z. Göröcs, L. Xue, S. O. Isikman, A. F. Coskun, O. Mudanyali, and A. Ozcan. Imaging without lenses: achievements and remaining challenges of wide-field on-chip microscopy. Nat. Methods 9:889–895, 2012.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Industrial Machine Sales, Inc. Personal communication.

  17. International Agency for Research on Cancer. In: World Cancer Report, edited by P. Boyle and B. Levin. Lyon. IARC, 2008.

  18. Kester, R. T., T. Christenson, R. Richards-Kortum, and T. S. Tkaczyk. Low cost, high performance, self-aligning miniature optical systems. Appl. Opt. 48:3375–3384, 2009.

    Article  PubMed Central  PubMed  Google Scholar 

  19. Kester, R. T., T. Tkaczyk, M. R. Descour, T. Christenson, and R. Richards-Kortum. High numerical aperture microendoscope objective for a fiber confocal reflectance microscope. Opt. Express 15:2409–2420, 2007.

    Article  PubMed  Google Scholar 

  20. Lee, M., O. Yaglidere, and A. Ozcan. Field-portable reflection and transmission microscopy based on lensless holography. Biomed. Opt. Express 2:2721–2730, 2011.

    Article  PubMed Central  PubMed  Google Scholar 

  21. Lee-Lewandrowski, E., J. L. Januzzi, S. M. Green, B. Tannous, A. H. Wu, A. Smith, A. Wong, M. M. Murakami, J. Kaczmarek, F. S. Apple, W. L. Miller, K. Hartman, and A. S. Jaffe. Multi-center validation of the Response Biomedical Corporation RAMP® NT-proBNP assay with comparison to the Roche Diagnostics GmbH Elecsys® proBNP assay. Clin. Chim. Acta 386:20–24, 2007.

    Article  CAS  PubMed  Google Scholar 

  22. Liang, C., K. B. Sung, R. R. Richards-Kortum, and M. R. Descour. Design of a high-numerical-aperture miniature microscope objective for an endoscopic fiber confocal reflectance microscope. Appl. Opt. 41:4603–4610, 2002.

    Article  PubMed  Google Scholar 

  23. McLeod, E., W. Luo, O. Mudanyali, A. Greenbaum, and A. Ozcan. Toward giga-pixel nanoscopy on a chip: a computational wide-field look at the nano-scale without the use of lenses. Lab Chip 13:2028–2035, 2013.

    Article  CAS  PubMed  Google Scholar 

  24. Miller, A. R., G. L. Davis, Z. M. Oden, M. R. Razavi, A. Fateh, M. Ghazanfari, F. Abdolrahimi, S. Poorazar, F. Sakhaie, R. J. Olsen, A. R. Bahrmand, M. C. Pierce, E. A. Graviss, and R. Richards-Kortum. Portable, battery-operated, low-cost, bright field and fluorescence microscope. PLoS ONE 5:e11890, 2010.

    Article  PubMed Central  PubMed  Google Scholar 

  25. Minion, J., H. Sohn, and M. Pai. Light-emitting diode technologies for TB diagnosis: what is on the market? Expert Rev. Med. Devices 6:341–345, 2009.

    Article  PubMed  Google Scholar 

  26. Myers, F. B., and L. P. Lee. Innovations in optical microfluidic technologies for point-of-care diagnostics. Lab Chip 8:2015–2031, 2008.

    Article  CAS  PubMed  Google Scholar 

  27. Rodriguez, W. R., N. Christodoulides, P. N. Floriano, S. Graham, S. Mohanty, M. Dixon, M. Hsiang, T. Peter, S. Zavahir, I. Thior, D. Romanovicz, B. Bernard, A. P. Goodey, B. D. Walker, and J. T. McDevitt. A microchip CD4 counting method for HIV monitoring in resource-poor settings. PLoS Med. 2:663–672, 2005.

    Article  CAS  Google Scholar 

  28. Seo, J., and L. P. Lee. Disposable integrated microfluidics with self-aligned planar microlenses. Sens. Actuators B 99:615–622, 2004.

    Article  CAS  Google Scholar 

  29. Shirley, D. A., S. N. Moonah, and K. L. Kotloff. Burden of disease from cryptosporidiosis. Curr. Opin. Infect. Dis. 25:555–563, 2012.

    Article  PubMed  Google Scholar 

  30. Sia, S. K., V. Linder, B. A. Parviz, A. Siegel, and G. M. Whitesides. An integrated approach to a portable and low-cost immunoassay for resource-poor settings. Angew. Chem. Int. Ed. 43:498–502, 2004.

    Article  CAS  Google Scholar 

  31. Smith, Z. J., K. Chu, A. R. Espenson, M. Rahimzadeh, A. Gryshuk, M. Molinaro, D. M. Dwyre, S. Lane, D. Mathews, and S. Wachsmann-Hogiu. Cell-phone-based platform for biomedical device development and education applications. PLoS ONE 6:e17150, 2011.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Weigum, S. E., P. N. Floriano, S. W. Redding, C. K. Yeh, S. D. Westbrook, H. S. McGuff, A. Lin, F. R. Miller, F. Villarreal, S. D. Rowan, N. Vigneswaran, M. D. Williams, and J. T. McDevitt. Nano-bio-chip sensor platform for examination of oral exfoliative cytology. Cancer Prev. Res. 3:518–528, 2010.

    Article  CAS  Google Scholar 

  33. World Health Organization. Laboratory Services in TB Control, Microscopy Part II. Geneva: WHO, 1998.

    Google Scholar 

  34. World Health Organization. Basic Malaria Microscopy: Part I. Learner’s Guide, 2nd ed. Geneva: WHO, 2010.

    Google Scholar 

  35. Wu, A. H., A. Smith, R. H. Christenson, M. M. Murakami, and F. S. Apple. Evaluation of a point-of-care assay for cardiac markers for patients suspected of acute myocardial infarction. Clin. Chim. Acta 346:211–219, 2004.

    Article  CAS  PubMed  Google Scholar 

  36. Yacoub-George, E., W. Hell, L. Meixner, F. Wenninger, K. Bock, P. Lindner, H. Wolf, T. Kloth, and K. A. Feller. Automated 10-channel capillary chip immunodetector for biological agents detection. Biosens. Bioelectron. 22:1368–1375, 2007.

    Article  CAS  PubMed  Google Scholar 

  37. Ymeti, A., J. Greve, P. V. Lambeck, T. Wink, S. W. van Hovell, T. A. Beumer, R. R. Wijn, R. G. Heideman, V. Subramaniam, and J. S. Kanger. Fast, ultrasensitive virus detection using a Young interferometer sensor. Nano Lett. 7:394–397, 2007.

    Article  CAS  PubMed  Google Scholar 

  38. Zhu, H., S. O. Isikman, O. Mudanyali, A. Greenbaum, and A. Ozcan. Optical imaging techniques for point-of-care diagnostics. Lab Chip 13:51–67, 2012.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. Zhu, H., O. Yaglidere, T. Su, D. Tseng, and A. Ozcan. Cost-effective and compact wide-field fluorescent imaging on a cell-phone. Lab Chip 11:315–322, 2010.

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Dr. Nadarajah Vigneswaran at The University of Texas Health Science Center, Dental Branch, Houston, for his help and expertise in reviewing the oral pathology slides. We also thank Dr. Robert Kester at Rice University for his initial editing input of the paper material. This research was supported by the National Cancer Institute (NCI) under Grants R01 CA124319 and R01 CA103830.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tomasz S. Tkaczyk.

Additional information

Associate Editor James Tunnell oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pierce, M.C., Weigum, S.E., Jaslove, J.M. et al. Optical Systems for Point-of-care Diagnostic Instrumentation: Analysis of Imaging Performance and Cost. Ann Biomed Eng 42, 231–240 (2014). https://doi.org/10.1007/s10439-013-0918-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-013-0918-z

Keywords

Navigation