Skip to main content
Log in

Classifying Lower Extremity Muscle Fatigue During Walking Using Machine Learning and Inertial Sensors

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Fatigue in lower extremity musculature is associated with decline in postural stability, motor performance and alters normal walking patterns in human subjects. Automated recognition of lower extremity muscle fatigue condition may be advantageous in early detection of fall and injury risks. Supervised machine learning methods such as support vector machines (SVMs) have been previously used for classifying healthy and pathological gait patterns and also for separating old and young gait patterns. In this study we explore the classification potential of SVM in recognition of gait patterns utilizing an inertial measurement unit associated with lower extremity muscular fatigue. Both kinematic and kinetic gait patterns of 17 participants (29 ± 11 years) were recorded and analyzed in normal and fatigued state of walking. Lower extremities were fatigued by performance of a squatting exercise until the participants reached 60% of their baseline maximal voluntary exertion level. Feature selection methods were used to classify fatigue and no-fatigue conditions based on temporal and frequency information of the signals. Additionally, influences of three different kernel schemes (i.e., linear, polynomial, and radial basis function) were investigated for SVM classification. The results indicated that lower extremity muscle fatigue condition influenced gait and loading responses. In terms of the SVM classification results, an accuracy of 96% was reached in distinguishing the two gait patterns (fatigue and no-fatigue) within the same subject using the kinematic, time and frequency domain features. It is also found that linear kernel and RBF kernel were equally good to identify intra-individual fatigue characteristics. These results suggest that intra-subject fatigue classification using gait patterns from an inertial sensor holds considerable potential in identifying “at-risk” gait due to muscle fatigue.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Aune, A. K., L. Nordsletten, S. Skjeldal, J. E. Madsen, and A. Ekeland. Hamstrings and gastrocnemius co-contraction protects the anterior cruciate ligament against failure: an in vivo study in the rat. J. Orthop. Res. 13:147–150, 1995.

    Article  CAS  PubMed  Google Scholar 

  2. Baratta, R., M. Solomonow, B. H. Zhou, D. Letson, R. Chuinard, and R. D’Ambrosia. Muscular coactivation. The role of the antagonist musculature in maintaining knee stability. Am. J. Sports Med. 16:113–122, 1988.

    Article  CAS  PubMed  Google Scholar 

  3. Barth, A. T., M. A. Hanson, H. C. Powell Jr., and J. Lach. TEMPO 3.1: A Body Area Sensor Network Platform for Continuous Movement Assessment, pp. 71–76, 2009.

  4. Barton, J. G., and A. Lees. An application of neural networks for distinguishing gait patterns on the basis of hip-knee joint angle diagrams. Gait Posture 5:28–33, 1997.

    Article  Google Scholar 

  5. Begg, R., and J. Kamruzzaman. A machine learning approach for automated recognition of movement patterns using basic, kinetic and kinematic gait data. J. Biomech. 38:401–408, 2005.

    Article  CAS  PubMed  Google Scholar 

  6. Begg, R. K., M. Palaniswami, and B. Owen. Support vector machines for automated gait classification. IEEE Trans. Biomed. Eng. 52:828–838, 2005.

    Article  PubMed  Google Scholar 

  7. Bouten, C. V. C., K. T. M. Koekkoek, M. Verduin, R. Kodde, and J. D. Janssen. A triaxial accelerometer and portable data processing unit for the assessment of daily physical activity. IEEE Trans. Biomed. Eng. 44:136–147, 1997.

    Article  CAS  PubMed  Google Scholar 

  8. Cavagna, G. A. Force platforms as ergometers. J. Appl. Physiol. 39:174–179, 1975.

    CAS  PubMed  Google Scholar 

  9. Cavagna, G. A., N. C. Heglund, and C. R. Taylor. Mechanical work in terrestrial locomotion: two basic mechanisms for minimizing energy expenditure. Am. J. Physiol. 233:R243–R261, 1977.

    CAS  PubMed  Google Scholar 

  10. Cavagna, G. A., F. P. Saibene, and R. Margaria. External work in walking. J. Appl. Physiol. 18:1–9, 1963.

    CAS  PubMed  Google Scholar 

  11. Chang, C.-C., and C.-J. Lin. Libsvm. ACM Trans. Intell. Syst. Technol. 2:1–27, 2011.

    Article  Google Scholar 

  12. Chapelle, O., P. Haffner, and V. N. Vapnik. Support vector machines for histogram-based image classification. IEEE Trans. Neural Netw. 10:1055–1064, 1999.

    Article  CAS  PubMed  Google Scholar 

  13. Chappell, J. D., D. C. Herman, B. S. Knight, D. T. Kirkendall, W. E. Garrett, and B. Yu. Effect of fatigue on knee kinetics and kinematics in stop-jump tasks. Am. J. Sports Med. 33:1022–1029, 2005.

    Article  PubMed  Google Scholar 

  14. Dietz, V., and J. Duysens. Significance of load receptor input during locomotion: a review. Gait Posture 11:102–110, 2000.

    Article  CAS  PubMed  Google Scholar 

  15. Eskofier, B. M., P. Federolf, P. F. Kugler, and B. M. Nigg. Marker-based classification of young-elderly gait pattern differences via direct PCA feature extraction and SVMs. Comput. Methods Biomech. Biomed. Engin. 16(4):435–442, 2013.

    Google Scholar 

  16. Ferrell, Jr., W. R., J. R. Rosenberg, R. H. Baxendale, D. Halliday, and L. Wood. Fourier analysis of the relation between the discharge of quadriceps motor units and periodic mechanical stimulation of cat knee joint receptors. Exp. Physiol. 75:739–750, 1990.

    PubMed  Google Scholar 

  17. Gear, W. S. Effect of different levels of localized muscle fatigue on knee position sense. J. Sports Sci. Med. 10:725–730, 2011.

    PubMed Central  PubMed  Google Scholar 

  18. Gorban, A. N., B. Kgl, D. C. Wunsch, and A. Zinovyev. Principal Manifolds for Data Visualization and Dimension Reduction. Berlin: Springer, 2007.

    Google Scholar 

  19. Hakkinen, K., and P. V. Komi. Effects of fatigue and recovery on electromyographic and isometric force- and relaxation-time characteristics of human skeletal muscle. Eur. J. Appl. Physiol. Occup. Physiol. 55:588–596, 1986.

    Article  CAS  PubMed  Google Scholar 

  20. Helbostad, J. L., S. Leirfall, R. Moe-Nilssen, and O. Sletvold. Physical fatigue affects gait characteristics in older persons. J. Gerontol. A Biol. Sci. Med. Sci. 62:1010–1015, 2007.

    Article  PubMed  Google Scholar 

  21. Hiemstra, L. A., I. K. Lo, and P. J. Fowler. Effect of fatigue on knee proprioception: implications for dynamic stabilization. J. Orthop. Sports Phys. Ther. 31:598–605, 2001.

    Article  CAS  PubMed  Google Scholar 

  22. Hreljac, A., and P. E. Martin. The relationship between smoothness and economy during walking. Biol. Cybern. 69:213–218, 1993.

    Article  CAS  PubMed  Google Scholar 

  23. Hudgins, B., P. Parker, and R. N. Scott. A new strategy for multifunction myoelectric control. IEEE Trans. Biomed. Eng. 40:82–94, 1993.

    Article  CAS  PubMed  Google Scholar 

  24. Inman, V. T. Human locomotion. Can. Med. Assoc. J. 94:1047–1054, 1966.

    CAS  PubMed Central  PubMed  Google Scholar 

  25. Johansson, H., P. Sjolander, and P. Sojka. A sensory role for the cruciate ligaments. Clin. Orthop. Relat. Res. 268:161–178, 1991.

    PubMed  Google Scholar 

  26. Johnston, 3rd, R. B., M. E. Howard, P. W. Cawley, and G. M. Losse. Effect of lower extremity muscular fatigue on motor control performance. Med. Sci. Sports Exerc. 30:1703–1707, 1998.

    PubMed  Google Scholar 

  27. Judge, J. O., C. Lindsey, M. Underwood, and D. Winsemius. Balance improvements in older women—effects of exercise training. Phys. Ther. 73:254–265, 1993.

    CAS  PubMed  Google Scholar 

  28. Karst, G. M., P. A. Hageman, T. F. Jones, and S. H. Bunner. Reliability of foot trajectory measures within and between testing sessions. J. Gerontol. A Biol. Sci. Med. Sci. 54:M343–M347, 1999.

    Article  CAS  PubMed  Google Scholar 

  29. Kellis, E., and C. Liassou. The effect of selective muscle fatigue on sagittal lower limb kinematics and muscle activity during level running. J. Orthop. Sports Phys. Ther. 39:210–220, 2009.

    Article  PubMed  Google Scholar 

  30. Kennedy, J. C., I. J. Alexander, and K. C. Hayes. Nerve supply of the human knee and its functional importance. Am. J. Sports Med. 10:329–335, 1982.

    Article  CAS  PubMed  Google Scholar 

  31. Lau, H. Y., K. Y. Tong, and H. Zhu. Support vector machine for classification of walking conditions of persons after stroke with dropped foot. Hum. Mov. Sci. 28:504–514, 2009.

    Article  PubMed  Google Scholar 

  32. Lee, C. R., and C. T. Farley. Determinants of the center of mass trajectory in human walking and running. J. Exp. Biol. 201:2935–2944, 1998.

    CAS  PubMed  Google Scholar 

  33. Lee, L. and W. E. L. Grimson. Gait analysis for recognition and classification. In Fifth IEEE International Conference on Automatic Face and Gesture Recognition, Proceedings, 2002, pp. 148–155.

  34. Lee, M., M. Roan, B. Smith, and T. E. Lockhart. Gait analysis to classify external load conditions using linear discriminant analysis. Hum. Mov. Sci. 28:226–235, 2009.

    Article  PubMed Central  PubMed  Google Scholar 

  35. Lephart, S. M., and T. J. Henry. Functional rehabilitation for the upper and lower extremity. Orthop. Clin. N. Am. 26:579–592, 1995.

    CAS  Google Scholar 

  36. Levinger, P., D. T. Lai, R. K. Begg, K. E. Webster, and J. A. Feller. The application of support vector machines for detecting recovery from knee replacement surgery using spatio-temporal gait parameters. Gait Posture 29:91–96, 2009.

    Article  PubMed  Google Scholar 

  37. Lin, D., M. A. Nussbaum, H. Seol, N. B. Singh, M. L. Madigan, and L. A. Wojcik. Acute effects of localized muscle fatigue on postural control and patterns of recovery during upright stance: influence of fatigue location and age. Eur. J. Appl. Physiol. 106:425–434, 2009.

    Article  PubMed  Google Scholar 

  38. Liu, J., T. E. Lockhart, M. Jones, and T. Martin. Local dynamic stability assessment of motion impaired elderly using electronic textile pants. IEEE Trans. Autom. Sci. Eng. 5(4):696–702, 2008.

    Article  PubMed Central  PubMed  Google Scholar 

  39. Lockhart, T. E., J. L. Smith, and J. C. Woldstad. Effects of aging on the biomechanics of slips and falls. Hum. Factors 47:708–729, 2005.

    Article  PubMed Central  PubMed  Google Scholar 

  40. Lockhart, T. E., J. C. Woldstad, and J. L. Smith. Effects of age-related gait changes on the biomechanics of slips and falls. Ergonomics 46:1136–1160, 2003.

    Article  PubMed Central  PubMed  Google Scholar 

  41. Marshall, K. W., and W. G. Tatton. Joint receptors modulate short and long latency muscle responses in the awake cat. Exp. Brain Res. 83:137–150, 1990.

    Article  CAS  PubMed  Google Scholar 

  42. Mills, P. M., and R. S. Barrett. Swing phase mechanics of healthy young and elderly men. Hum. Mov. Sci. 20:427–446, 2001.

    Article  CAS  PubMed  Google Scholar 

  43. Morris, M. E., C. Cantwell, L. Vowels, and K. Dodd. Changes in gait and fatigue from morning to afternoon in people with multiple sclerosis. J. Neurol. Neurosurg. Psychiatry 72:361–365, 2002.

    Article  CAS  PubMed  Google Scholar 

  44. Najafi, B., K. Aminian, F. Loew, Y. Blanc, and P. A. Robert. Measurement of stand-sit and sit-stand transitions using a miniature gyroscope and its application in fall risk evaluation in the elderly. IEEE Trans. Biomed. Eng. 49:843–851, 2002.

    Article  PubMed  Google Scholar 

  45. Nelson, W. L. Physical principles for economies of skilled movements. Biol. Cybern. 46:135–147, 1983.

    Article  CAS  PubMed  Google Scholar 

  46. Parijat, P., and T. E. Lockhart. Effects of lower extremity muscle fatigue on the outcomes of slip-induced falls. Ergonomics 51:1873–1884, 2008.

    Article  PubMed Central  PubMed  Google Scholar 

  47. Saunders, J. B., V. T. Inman, and H. D. Eberhart. The major determinants in normal and pathological gait. J. Bone Jt. Surg. Am. 35A:543–558, 1953.

    Google Scholar 

  48. Skinner, H. B., M. P. Wyatt, J. A. Hodgdon, D. W. Conard, and R. L. Barrack. Effect of fatigue on joint position sense of the knee. J. Orthop. Res. 4:112–118, 1986.

    Article  CAS  PubMed  Google Scholar 

  49. Smith, B. A., M. Kubo, and B. D. Ulrich. Gait parameter adjustments for walking on a treadmill at preferred, slower, and faster speeds in older adults with Down syndrome. Curr. Gerontol. Geriatr. Res. 2012:1–7, 2012.

    Article  Google Scholar 

  50. Soangra, R., T. E. Lockhart, J. Lach, and E. M. Abdel-Rahman. Effects of hemodialysis therapy on sit-to-walk characteristics in end stage renal disease patients. Ann. Biomed. Eng. 41(4):795–805, 2012.

    Article  PubMed  Google Scholar 

  51. Solomonow, M., R. Baratta, B. H. Zhou, H. Shoji, W. Bose, C. Beck, et al. The synergistic action of the anterior cruciate ligament and thigh muscles in maintaining joint stability. Am. J. Sports Med. 15:207–213, 1987.

    Article  CAS  PubMed  Google Scholar 

  52. Stein, R. B., M. N. Oguztoreli, and C. Capaday. What is Optimized in Muscular Movements?. Champaign: Human Kinetics Pub. Inc, pp. 131–150, 1986.

    Google Scholar 

  53. Strohrmann, C., H. Harms, C. Kappeler-Setz, and G. Troster. Monitoring kinematic changes with fatigue in running using body-worn sensors. IEEE Trans. Inf. Technol. Biomed. 16:983–990, 2012.

    Article  PubMed  Google Scholar 

  54. Toumi, H., G. Poumarat, T. M. Best, A. Martin, J. Fairclough, and M. Benjamin. Fatigue and muscle-tendon stiffness after stretch-shortening cycle and isometric exercise. Appl. Physiol. Nutr. Metab. 31:565–572, 2006.

    Article  PubMed  Google Scholar 

  55. Vapnik, V. N. An overview of statistical learning theory. IEEE Trans. Neural Netw. 10:988–999, 1999.

    Article  CAS  PubMed  Google Scholar 

  56. Wolfson, L., R. Whipple, C. Derby, J. Judge, M. King, P. Amerman, et al. Balance and strength training in older adults: intervention gains and Tai Chi maintenance. J. Am. Geriatr. Soc. 44:498–506, 1996.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This research was supported by the NSF (Grant #CBET-0756058) and NSF-Information and Intelligent Systems (IIS) and Smart Health and Wellbeing—1065442 and 1065262. NIOSH (Grant #CDC/NIOSHR01-OH009222). Additionally, supported by the NIH (L30-AG022963-04/NIH HHS/United States).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thurmon E. Lockhart.

Additional information

Associate Editor Michael R. Torry oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, J., Lockhart, T.E. & Soangra, R. Classifying Lower Extremity Muscle Fatigue During Walking Using Machine Learning and Inertial Sensors. Ann Biomed Eng 42, 600–612 (2014). https://doi.org/10.1007/s10439-013-0917-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-013-0917-0

Keywords

Navigation