Skip to main content

Advertisement

Log in

An Experimental Investigation of the Hemodynamic Variations Due to Aplastic Vessels Within Three-Dimensional Phantom Models of the Circle of Willis

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

A complete circle of Willis (CoW) is found in approximately 30–50% of the population. Anatomical variations, such as absent or surgically clamped vessels, can result in undesirable flow patterns. These can affect the brain’s ability to maintain cerebral perfusion and the formation of cerebral aneurysms. An experimental test system was developed to simulate cerebral physiological conditions through three flexible 3D patient-specific models of complete and incomplete CoW geometries. Flow visualizations were performed with isobaric dyes and the mapped dye streamlines were tracked throughout the models. Three to seven flow impact locations were observed for all configurations, corresponding to known sites for aneurysmal formation. Uni and bi-directional cross-flows occurred along the communicating arteries. The greatest shunting of flow occurred for a missing pre-communicating anterior (A1) and posterior (P1) cerebral arteries. The anterior cerebral arteries had the greatest reduction (15–37%) in efferent flow rates for missing either a unilateral A1 or bilateral P1 segments. The bi-directional cross-flows, with multiple afferent flow mixing, observed along the communicating arteries may explain the propensity of aneurysm formation at these sites. Reductions in efferent flow rates due to aplastic vessel configurations may affect normal brain function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  1. Alastruey, J., K. H. Parker, J. Peiró, S. M. Byrd, and S. J. Sherwin. Modeling the circle of Willis to assess the effects of anatomical variations and occlusions on cerebral flows. J. Biomech. 40(8):1794–1805, 2007.

    Article  CAS  PubMed  Google Scholar 

  2. Asakura, F., H. Yilmaz, G. Sekoranja, et al. Preclinical testing of a new clot-retrieving wire device using polyvinyl alcohol hydrogel vascular models. Neuroradiology 49(3):243–251, 2007.

    Article  PubMed  Google Scholar 

  3. Cassot, F., M. Zagzoule, and J. P. Marc-Vergnes. Hemodynamic role of circle of Willis in stenoses of internal carotid arteries. An analytical solution of a linear model. J. Biomech. 33(4):395–405, 2000.

    Article  CAS  PubMed  Google Scholar 

  4. Chadwick, A., and J. Morfett. Hydraulics in Civil and Environmental Engineering. London: Chapman and Hall, pp. 375–378, 1997.

    Google Scholar 

  5. Chung, E. M. L., J. P. Hague, M.-A. Chanrion, K. V. Ramnarine, E. Katsogridakis, and D. H. Evans. Embolus trajectory through a physical replica of the major cerebral arteries. Stroke 41(4):647–652, 2010.

    Article  PubMed  Google Scholar 

  6. Ciceri, E. F., R. P. Klucznik, R. G. Grossman, J. E. Rose, and M. E. Mawad. Endovascular treatment of peripheral aneurysms of the posterior inferior cerebellar artery. Am. J. Neuroradiology 22(1):27–34, 2001.

    CAS  Google Scholar 

  7. Devault, K., P. A. Gremaud, V. Novak, M. S. Olufsen, G. Vernières, and P. Zhao. Blood flow in the circle of Willis: modeling and calibration. Multiscale Model Simul. 7(2):888–909, 2008.

    Article  PubMed Central  PubMed  Google Scholar 

  8. Fahrig, R., H. Nikolov, A. J. Fox, and D. W. Holdsworth. A three-dimensional cerebrovascular flow phantom. Med. Phys. 26(8):1589–1599, 1999.

    Article  CAS  PubMed  Google Scholar 

  9. Ford, M. D., N. Alperin, S. H. Lee, D. W. Holdsworth, and D. A. Steinman. Characterization of volumetric flow rate waveforms in the normal internal carotid and vertebral arteries. Physiol. Meas. 26(4):477–488, 2005.

    Article  PubMed  Google Scholar 

  10. Günther, M. Magnetic resonance techniques to measure distribution of cerebral blood flow. Appl. Cardiopulm. Pathophysiol. 13:212–218, 2009.

    Google Scholar 

  11. Henderson, R. D., M. Eliasziw, A. J. Fox, P. M. Rothwell, and H. J. Barnett. Angiographically defined collateral circulation and risk of stroke in patients with severe carotid artery stenosis. North American Symptomatic Carotid Endarterectomy Trial (NASCET) Group. Stroke 31:128–132, 2000.

    Article  CAS  PubMed  Google Scholar 

  12. Hendrikse, J., M. J. Hartkamp, B. Hillen, W. P. T. M. Mali, and J. V. D. Grond. Collateral ability of the circle of Willis in patients with unilateral internal carotid artery occlusion: border zone infarcts and clinical symptoms. Stroke 32(12):2768–2773, 2001.

    Article  CAS  PubMed  Google Scholar 

  13. Hoksbergen, A. W., B. Fülesdi, D. A. Legemate, and L. Csiba. Collateral configuration of the circle of Willis: transcranial color-coded duplex ultrasonography and comparison with postmortem anatomy. Stroke 31(6):1346–1351, 2000.

    Article  CAS  PubMed  Google Scholar 

  14. Hoksbergen, A. W. J., C. B. L. Majoie, F.-J. H. Hulsmans, and D. A. Legemate. Assessment of the collateral function of the circle of Willis: three-dimensional time-of-flight MR angiography compared with transcranial color-coded duplex sonography. Am. J. Neuroradiol. 24(3):456–462, 2003.

    PubMed  Google Scholar 

  15. Jou, L.-D., D. H. Lee, and M. E. Mawad. Cross-flow at the anterior communicating artery and its implication in cerebral aneurysm formation. J. Biomech. 43(11):2189–2195, 2010.

    Article  PubMed  Google Scholar 

  16. Kayembe, K. N., M. Sasahara, and F. Hazama. Cerebral aneurysms and variations in the circle of Willis. Stroke 15(5):846–850, 1984.

    Article  CAS  PubMed  Google Scholar 

  17. Knox, K., C. W. Kerber, S. Singel, et al. Stereolithographic vascular replicas from CT scans: choosing treatment strategies, teaching, and research from live patient scan data. Am. J. Neuroradiol. 26(6):1428–1431, 2005.

    PubMed  Google Scholar 

  18. Krabbe-Hartkamp, M. J., J. Van Der Grond, F. De Leeuw, J. De Groot, A. Algra, B. Hillen, M. Breteler, and W. Mali. Circle of Willis: morphologic variation on three-dimensional time-of-flight MR angiograms. Radiology 207(1):798–805, 1998.

    Google Scholar 

  19. Krings, T., D. M. Mandell, T.-R. Kiehl, S. Geibprasert, M. Tymianski, H. Alvarez, K. G. Terbrugge, and F.-J. Hans. Intracranial aneurysms: from vessel wall pathology to therapeutic approach. Nat. Rev. Neurol. 7(10):547–559, 2011.

    Article  CAS  PubMed  Google Scholar 

  20. Kudo, T. An operative complication in a patient with a true posterior communicating artery aneurysm: case report and review of the literature. Neurosurgery 27(4):650–653, 1990.

    Article  CAS  PubMed  Google Scholar 

  21. Kwon, O.-K., S. H. Kim, B. J. Kwon, H.-S. Kang, J. H. Kim, C. W. Oh, and M. H. Han. Endovascular treatment of wide-necked aneurysms by using two microcatheters: techniques and outcomes in 25 patients. Am. J. Neuroradiol. 26(4):894–900, 2005.

    PubMed  Google Scholar 

  22. Lee, J. W., K. C. Lee, Y. B. Kim, and S. K. Huh. Surgery for distal anterior cerebral artery aneurysms. Surg. Neurol. 70(2):153–159, 2008.

    Article  PubMed  Google Scholar 

  23. Li, L., W. Y. Huo, S. De Bao, H. Goto, and K. Watanabe. Intracranial aneurysms and ischemic cerebrovascular diseases. Int. Congr. Ser. 1259:335–338, 2004.

    Article  Google Scholar 

  24. Liang, F., K. Fukasaku, H. Liu, and S. Takagi. A computational model study of the influence of the anatomy of the circle of Willis on cerebral hyperperfusion following carotid artery surgery. Biomed. Eng. Online 10:84, 2011.

    Article  PubMed Central  PubMed  Google Scholar 

  25. Lippert, H., and R. Pabst. Arterial Variations in Man: Classification and Frequency. Munich: JF Bergmann-Verlag Gmbh, KG, pp. 3–10, 1985.

    Book  Google Scholar 

  26. Maas, S. J., and J. E. Safdieh. Ischemic stroke: pathophysiology and principles of localization. Hosp. Physician Neurol. Board Rev. Manual. 13(2):1–17, 2009.

    Google Scholar 

  27. Macchi, C., R. M. Lova, B. Miniati, M. Gulisano, C. Pratesi, A. A. Conti, and G. F. Gensini. The circle of Willis in healthy older persons. J. Cardiovasc. Surg. 43(6):887–890, 2002.

    CAS  Google Scholar 

  28. Macchi, C., R. Molino Lova, B. Miniati, M. Gulisano, C. Pratesi, A. A. Conti, and G. F. Gensini. Relationship between the calibre of carotid arteries and the configuration of the circle of Willis in healthy older persons. J. Cardiovasc. Surg. 44(2):231–236, 2003.

    CAS  Google Scholar 

  29. Monson, K. L., W. Goldsmith, N. M. Barbaro, and G. T. Manley. Significance of source and size in the mechanical response of human cerebral blood vessels. J. Biomech. 38(4):737–744, 2005.

    Article  PubMed  Google Scholar 

  30. Moore, S., T. David, J. G. Chase, J. Arnold, and J. Fink. 3D models of blood flow in the cerebral vasculature. J. Biomech. 39(8):1454–1463, 2006.

    Article  CAS  PubMed  Google Scholar 

  31. Mulder, G., C. B. Bogaerds, P. Rongen, and F. N. van de Vosse. The influence of contrast agent injection on physiological flow in the circle of Willis. Med. Eng. Phys. 33(2):195–203, 2011.

    Article  CAS  PubMed  Google Scholar 

  32. Sforza, D. M., M. Putman, and J. R. Cebral. Hemodynamics of cerebral aneurysms. Annu. Rev. Fluid Mech. 41:91–107, 2009.

    Article  PubMed Central  PubMed  Google Scholar 

  33. Songsaeng, D., S. Geibprasert, R. Willinsky, M. Tymianski, K. G. TerBrugge, and T. Krings. Impact of anatomical variations of the circle of Willis on the incidence of aneurysms and their recurrence rate following endovascular treatment. Clin. Radiol. 65(11):895–901, 2010.

    Article  CAS  PubMed  Google Scholar 

  34. Spetzler, R. F., M. N. Hadley, D. Rigamonti, L. P. Carter, P. A. Raudzens, S. A. Shedd, and E. Wilkinson. Aneurysms of the basilar artery treated with circulatory arrest, hypothermia, and barbiturate cerebral protection. J. Neurosurg. 68(6):868–879, 1988.

    Article  CAS  PubMed  Google Scholar 

  35. Stehbens, W. E. Etiology of intracranial berry aneurysms. J. Neurosurg. 70(6):823–831, 1989.

    Article  CAS  PubMed  Google Scholar 

  36. Stehbens, W. E. Evaluation of aneurysm models, particularly of the aorta and cerebral arteries. Exp. Mol. Pathol. 67(1):1–14, 1999.

    Article  CAS  PubMed  Google Scholar 

  37. Steinman, D. A., Y. Hoi, P. Fahy, L. Morris, et al. Variability of computational fluid dynamics solutions for pressure and flow in a giant aneurysm: the ASME 2012 summer bioengineering conference CDF challenge. J. Biomech. Eng. 135(2):021016, 2013.

    Article  PubMed  Google Scholar 

  38. Suzuki, J., R. Kwak, and Y. Okudaira. The safe time limit of temporary clamping of cerebral arteries in the direct surgical treatment of intracranial aneurysm under moderate hypothermia. Tohoku J. Exp. Med. 127(1):1–7, 1979.

    Article  CAS  PubMed  Google Scholar 

  39. Suzuki, O., S. Miyachi, M. Negoro, T. Okamoto, Y. Sahara, K. Hattori, N. Kobayashi, T. Kojima, and J. Yoshida. Treatment strategy for aneurysms of the posterior cerebral artery. Interv. Neuroradiol. 9(1):83–88, 2003.

    CAS  PubMed Central  PubMed  Google Scholar 

  40. Tanaka, H., N. Fujita, T. Enoki, et al. Relationship between variations in the circle of Willis and flow rates in internal carotid and basilar arteries determined by means of magnetic resonance imaging with semiautomated lumen segmentation: reference data from 125 healthy volunteers. Am. J. Neuroradiol. 27:1770–1775, 2006.

    CAS  PubMed  Google Scholar 

  41. Tateshima, S., J. Grinstead, S. Sinha, et al. Intraaneurysmal flow visualization by using phase-contrast magnetic resonance imaging: feasibility study based on a geometrically realistic in vitro aneurysm model. J. Neurosurg. 100(6):1041–1048, 2004.

    Article  PubMed  Google Scholar 

  42. Ujiie, H., D. W. Liepsch, M. Goetz, R. Yamaguchi, H. Yonetani, and K. Takakura. Hemodynamic study of the anterior communicating artery. Stroke 27(11):2086–2093, 1996.

    Article  CAS  PubMed  Google Scholar 

  43. Urbanski, P. P., A. Lenos, J. C. Blume, V. Ziegler, B. Griewing, R. Schmitt, A. Diegeler, and M. Dinkel. Does anatomical completeness of the circle of Willis correlate with sufficient cross-perfusion during unilateral cerebral perfusion? Eur. J. Cardiothorac. Surg. 33(3):402–408, 2008.

    Article  PubMed  Google Scholar 

  44. Vega, C., J. V. Kwoon, and S. D. Lavine. Intracranial aneurysms: current evidence and clinical practice. Am. Fam. Physician 66(4):601–608, 2002.

    PubMed  Google Scholar 

  45. Weir, B., J. Miller, and D. Russell. Intracranial aneurysms: a clinical, angiographic and computerized tomographic study. Can. J. Neurol. Sci. 4(2):99–105, 1977.

    CAS  PubMed  Google Scholar 

Download references

Conflict of interest

We have no conflict of interest issues.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liam Morris.

Additional information

Associate Editor Peter E. McHugh oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fahy, P., McCarthy, P., Sultan, S. et al. An Experimental Investigation of the Hemodynamic Variations Due to Aplastic Vessels Within Three-Dimensional Phantom Models of the Circle of Willis. Ann Biomed Eng 42, 123–138 (2014). https://doi.org/10.1007/s10439-013-0905-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-013-0905-4

Keywords

Navigation