Skip to main content
Log in

An Electromagnetic Thermotherapy System with a Deep Penetration Depth for Percutaneous Thermal Ablation

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Thermal ablation has been a promising method to remove the cancerous tissues. Electromagnetic-based thermotherapy has been extensively investigated for a variety of medical applications recently. In this study, a prototype electromagnetic thermotherapy system has been developed with a new coil design and a two-section needle. The coil can generate an alternating electromagnetic field (EMF) with a deep penetration depth to remotely heat the needle which is located up to 15 cm away, enabling percutaneous thermal ablation. Several important parameters, including the heating effects of the needle at different positions, the intensity of the EMF and the induced temperature distribution on the surrounding tissue, are first explored. An in vitro animal experiment has also been performed which shows EMF-induced ablation in a porcine liver by the needle. Furthermore, an in vivo experiment on an animal model (a New Zealand white rabbit) is also conducted in the study. Thus, the two-section needle combined with the coil-generated EMF has been demonstrated to be a promising thermotherapy system for percutaneous thermal ablation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15
Figure 16
Figure 17

Similar content being viewed by others

References

  1. Berry, C., and A. S. G. Curtis. Functionalisation of magnetic nanoparticles for applications in biomedicine. J. Phys. D Appl. Phys. 36:198–206, 2003.

    Article  Google Scholar 

  2. Flanagan, T. B., B. S. Bowerman, and G. E. Biehl. Hysteresis in metal/hydrogen systems. Scr. Metall. 14:443–447, 1980.

    Article  CAS  Google Scholar 

  3. Fuchs, K. H. Minimally invasive surgery. Endoscopy 34(2):154–159, 2002.

    Article  CAS  PubMed  Google Scholar 

  4. Goldberg, S. N., G. S. Gazelle, and P. R. Mueller. Thermal ablation therapy for focal malignancy a unified approach to underlying principles, techniques, and diagnostic imaging guidance. Am. J. Roentgenol. 174(2):323–331, 2000.

    Article  CAS  Google Scholar 

  5. Goldberg, S. N., P. F. Hahn, K. K. Tanabe, P. R. Mueller, W. Schima, C. A. Athanasoulis, C. C. Compton, L. Solbiati, and G. S. Gazelle. Percutaneous radiofrequency tissue ablation: does perfusion-mediated tissue cooling limit coagulation necrosis? J. Vasc. Interv. Radiol. 9:101–111, 1998.

    Article  CAS  PubMed  Google Scholar 

  6. Goldberg, S. N., L. Solbiati, P. F. Hahn, E. Cosman, J. E. Conrad, R. Fogle, and G. S. Gazelle. Radiofrequency tumor ablation using a clustered electrode technique: results in animals and patients with liver metastases. Radiology 209:371–379, 1998.

    CAS  PubMed  Google Scholar 

  7. Huang, S. C., Y. Y. Chang, Y. J. Chou, Y. S. Shan, X. Z. Lin, and G. B. Lee. Dual-row needle arrays under an electromagnetic thermotherapy system for bloodless liver resection surgery. IEEE Trans. Biomed. Eng. 59(3):824–831, 2012.

    Article  PubMed  Google Scholar 

  8. Jones, R. P., N. R. Kitteringham, M. Terlizzo, C. Hancock, D. Dunne, S. W. Fenwick, G. J. Poston, P. Ghaneh, and H. Z. Malik. Microwave ablation of ex vivo human liver and colorectal liver metastases with a novel 14.5 GHz generator. Int. J. Hyperth. 28(1):43–54, 2012.

    Article  Google Scholar 

  9. Jordana, A., R. Scholza, K. M. Hauffb, M. Johannsenc, P. Wusta, J. Nadobnya, H. Schirrad, H. Schmidtd, S. Degerc, S. Loeningc, W. Lankschb, and R. Felixa. Presentation of a new magnetic field therapy system for the treatment of human solid tumors with magnetic fluid hyperthermia. J. Magn. Mater. 225(1–2):118–126, 2001.

    Article  Google Scholar 

  10. Kettering, M., H. Richter, F. Wiekhorst, S. B. Streck, L. Trahms, W. A. Kaiser, and I. Hilger. Minimal-invasive magnetic heating of tumors does not alter intra-tumoral nanoparticle accumulation, allowing for repeated therapy sessions: an in vivo study in mice. Nanotechnology 22(50):505–507, 2011.

    Article  Google Scholar 

  11. Lepers, B., P. Clegg, N. Cronin, and I. Wieland. A microwave surface applicator for tissue coagulation: technical characteristics and performances. J. Med. Devices 6(1):014502, 2012.

    Article  Google Scholar 

  12. Livraghi, T., F. Meloni, L. Solbiati, and G. Zanus. Complications of microwave ablation for liver tumors: results of a multicenter study. Cardiovasc. Intervent. Radiol. 35(4):868–874, 2012.

    Article  PubMed  Google Scholar 

  13. McGahan, J. P., and G. D. Dodd. Radiofrequency ablation of the liver current status. Am. J. Roentgenol. 176(1):3–16, 2001.

    Article  Google Scholar 

  14. Nikfarjam, M., V. Muralidharan, and C. Christophi. Mechanisms of focal heat destruction of liver tumors. J. Surg. Res. 127:208–223, 2005.

    Article  PubMed  Google Scholar 

  15. Saltman, A. E., L. S. Rosenthal, N. A. Francalancia, and S. J. Lahey. A completely endoscopic approach to microwave ablation for atrial fibrillation. Heart Surg. Forum 6(3):38–41, 2003.

    Google Scholar 

  16. Shan, Y. S., R. Zuchini, H. W. Tsai, P. D. Lin, G. B. Lee, and X. Z. Lin. Bloodless liver resection using needle arrays under alternating electromagnetic fields. Surg. Innov. 17(2):95–100, 2010.

    Article  PubMed  Google Scholar 

  17. Solbiati, L., T. Ierace, S. N. Goldberg, S. Sironi, T. Livraghi, R. Fiocca, G. Servadio, G. Rizzatto, P. R. Mueller, A. D. Maschio, and G. S. Gazelle. Percutaneous US-guided radio-frequency tissue ablation of liver metastases: treatment and follow-up in 16 patients. Radiology 202:195–203, 1997.

    CAS  PubMed  Google Scholar 

  18. Stauffer, P. R., T. C. Cetas, and R. C. Jones. Magnetic induction heating of ferromagnetic implants for inducing localized hyperthermia in deep-seated tumors. IEEE Trans. Biomed. Eng. 31(2):235–251, 1984.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the National Science Council (NSC 101-2325-B-006-014) for partial financial support of this project. The authors would also like to thank Ms. Sz-Ying Chen and Mr. Dung-Ren Lee for assisting with the percutaneous thermal ablation on the animal models.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xi-Zhang Lin or Gwo-Bin Lee.

Additional information

Associate Editor Tingrui Pan oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, SC., Chang, YY., Kang, JW. et al. An Electromagnetic Thermotherapy System with a Deep Penetration Depth for Percutaneous Thermal Ablation. Ann Biomed Eng 42, 86–96 (2014). https://doi.org/10.1007/s10439-013-0899-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-013-0899-y

Keywords

Navigation