Skip to main content
Log in

Evaluation of Mechanical Properties of Human Mesenchymal Stem Cells During Differentiation to Smooth Muscle Cells

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Human mesenchymal stem cells (hMSCs) are multipotent cells appropriate for a variety of tissue engineering and cell therapy applications. Mechanical properties of hMSCs during differentiation are associated with their particular metabolic activity and regulate cell function due to alternations in cytoskeleton and structural elements. The objective of this study is to evaluate elastic and viscoelastic properties of hMSCs during long term cultivation in control and transforming growth factor-β1 treatment groups using micropipette aspiration technique. The mean Young’s modulus (E) of the control samples remained nearly unchanged during 6 days of cultivation, but that of the test samples showed an initial reduction compared to its relevant control sample after 2 days of treatment by biological growth factor, followed by a significant rise after 4 and 6 days. The viscoelastic creep tests showed that both instantaneous and equilibrium moduli significantly increased with the treatment time and reached to maximum values of 622.9 ± 114.2 and 144.3 ± 11.6 Pa at the sixth day, respectively, while increase in apparent viscosity was not statistically significant. Such change of mechanical properties of hMSCs during specific lineage commitment contributes to regenerative medicine as well as stem-cell-based therapy in which biophysical signals regulate stem cell fate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Bianco, P., M. Riminucci, S. Granthos, and P. G. Robey. Bone marrow stromal stem cells: nature, biology, and potential applications. Stem Cells 19:180–192, 2001.

    Article  CAS  PubMed  Google Scholar 

  2. Chou, R., M. Stromer, R. Robson, and T. Huiatt. Assembly of contractile and cytoskeletal elements in developing smooth muscle cells. Dev. Biol. 149:339–348, 1992.

    Article  CAS  PubMed  Google Scholar 

  3. Derynck, R., and Y. Zhang. Smad-dependent and Smad-independent pathways in TGF-beta family signaling. Nature 425:577–584, 2003.

    Article  CAS  PubMed  Google Scholar 

  4. Gonzalez-Cruz, R. D., V. C. Fonseca, and E. M. Darling. Cellular mechanical properties reflect the differentiation potential of adipose-derived mesenchymal stem cells. PNAS 109:1523–1529, 2012.

    Article  Google Scholar 

  5. Guilak, F., J. Tedrow, and R. Burgkart. Viscoelastic properties of cell nucleus. Biochem. Biophys. Res. Commun. 269:781–786, 2000.

    Article  CAS  PubMed  Google Scholar 

  6. Guilak, F., L. G. Alexopoulos, M. A. Haider, H. P. Ting-Beall, and L. A. Setton. Zonal uniformity in mechanical properties of the chondrocyte pericellular matrix: micropipette aspiration of canine chondrons Isolated by Cartilage Homogenization. Ann. Biomed. Eng. 33:1312–1318, 2005.

    Article  PubMed  Google Scholar 

  7. Guo, X., and S. Chen. Transforming growth factor-β and smooth muscle differentiation. World J. Biol. Chem. 3:41–52, 2012.

    Article  PubMed Central  PubMed  Google Scholar 

  8. Hochmuth, R. M. Micropipette aspiration of living cells. J. Biomech. 33:15–22, 2000.

    Article  CAS  PubMed  Google Scholar 

  9. Jones, W. R., H. P. Ting-Beall, G. M. Lee, S. S. Kelley, R. M. Hochmuth, and F. Guilak. Alterations in the Young’s modulus and volumetric properties of chondrocytes isolated from normal and osteoarthritic human cartilage. J. Biomech. 32:119–127, 1999.

    Article  CAS  PubMed  Google Scholar 

  10. Kurpinski, K., H. Lam, J. Chu, A. Wang, A. Kim, E. Tsay, S. Agrawal, D. V. Schaffer, and S. Li. Transforming growth factor-β and notch signaling mediate stem cell differentiation into smooth muscle cells. Stem Cells 28:734–742, 2010.

    Article  CAS  PubMed  Google Scholar 

  11. Kurpinski, K., J. Chu, D. Wang, and S. Li. Proteomic profiling of mesenchymal stem cells responses to mechanical strain and TGF-β1. Cell. Mol. Bioeng. 2:606–614, 2009.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Li, D., J. Zhou, F. Chowdhury, J. Cheng, N. Wang, and F. Wang. Role of mechanical factors in fate decisions of stem cells. Regen. Med. 6:229–240, 2011.

    Article  PubMed Central  PubMed  Google Scholar 

  13. Lim, C. T., E. H. Zhou, and S. T. Quek. Mechanical models for living cells: a review. J. Biomech. 39:195–216, 2006.

    Article  CAS  PubMed  Google Scholar 

  14. McBeath, R., D. Pirone, C. Nelson, K. Bhadiraju, and C. S. Chen. Cell shape, cytoskeletal tension, and RhoA regulate stem cell lineage commitment. Dev. Cell 6:483–495, 2004.

    Article  CAS  PubMed  Google Scholar 

  15. Narita, Y., A. Yamawaki, H. Kagami, M. Ueda, and Y. Udea. Effects of transforming growth factor-beta1 and ascorbic acid on differentiation of human bone-marrow-derived mesenchymal stem cells into smooth muscle cell lineage. Cell Tissue Res. 333:449–459, 2008.

    Article  CAS  PubMed  Google Scholar 

  16. Owens, G. K. Regulation of differentiation of vascular smooth muscle cells. Physiol. Rev. 75:487–517, 1995.

    CAS  PubMed  Google Scholar 

  17. Pittenger, M. F., A. M. Mackay, S. C. Beck, R. K. Jaiswal, R. Douglas, J. D. Mosca, M. A. Moorman, D. W. Simonetti, S. Craig, and D. R. Marshakl. Multilineage potential of adult human mesenchymal stem cells. Science 284:147–151, 1999.

    Article  Google Scholar 

  18. Rodriguez, J. P., M. Gonzalez, S. Rios, and V. Cambiazo. Cytoskeletal organization of human mesenchymal stem cells (MSC) changes during their osteogenic differentiation. J. Cell. Biochem. 93:721–731, 2004.

    Article  CAS  PubMed  Google Scholar 

  19. Settleman, J. Tension precedes commitment-even for a stem cell. Mol. Cell 14:148–150, 2004.

    Article  CAS  PubMed  Google Scholar 

  20. Shi, Z. D., G. Abraham, and J. M. Tarbell. Shear stress modulation of smooth muscle cell marker genes in 2-D and 3-D depends on mechanotransduction by heparin sulfate proteoglycans and ERK1/2. PLoS ONE 5:12196, 2010.

    Article  Google Scholar 

  21. Stegemann, J. P., and R. M. Nerem. Phenotype modulation in vascular tissue engineering using biochemical and mechanical stimulation. Ann. Biomed. Eng. 31:391–402, 2003.

    Article  PubMed  Google Scholar 

  22. Sun, H., M. Yamamoto, M. Mejillano, and H. Yin. Gelsolin, a Multifunctional Actin Regulatory Protein. J. Biol. Chem. 274:33179–33182, 1999.

    Article  CAS  PubMed  Google Scholar 

  23. Tan, S. C., W. X. Pan, G. Ma, N. Cai, K. W. Leong, and K. Liao. Viscoelastic behavior of human mesenchymal stem cells. BMC Cell Biol. 9:40, 2008.

    Article  PubMed Central  PubMed  Google Scholar 

  24. Theret, D. P., M. J. Levesque, M. Sato, R. M. Nerem, and L. T. Wheeler. The application of a homogeneous half-space model in the analysis of endothelial-cell micropipette measurements. J. Biomech. Eng. 110:190–199, 1988.

    Article  CAS  PubMed  Google Scholar 

  25. Titushkin, I., and M. Cho. Modulation of cellular mechanics during osteogenic differentiation of human mesenchymal stem cells. Biophys. J. 93:3693–3702, 2007.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Trickey, W. R., T. P. Vail, and F. Guilak. The role of the cytoskeleton in the viscoelastic properties of human articular chondrocytes. J. Orthop. Res. 22:131–139, 2004.

    Article  PubMed  Google Scholar 

  27. Volokh, K. Y. Cytoskeletal architecture and mechanical behavior of living cells. Biorheology 40:213–220, 2003.

    PubMed  Google Scholar 

  28. Wang, D., J. Park, J. Chu, A. Krakowski, K. Luo, D. Chen, and S. Li. Proteomic profiling of bone marrow mesenchymal stem cells upon transforming growth factor β1 stimulation. J. Biol. Chem. 279:43725–43734, 2004.

    Article  CAS  PubMed  Google Scholar 

  29. Wang, J. H., and B. P. Thampatty. An introductory review of cell mechanobiology. Biomech. Model. Mechanobiol. 5:1–16, 2006.

    Article  CAS  PubMed  Google Scholar 

  30. Yourek, G., M. Hussain, and J. Mao. Cytoskeletal changes of mesenchymal stem cells during differentiation. ASAIO J. 53:219–228, 2007.

    Article  PubMed Central  PubMed  Google Scholar 

  31. Yu, H., C. Y. Tay, W. S. Leong, S. C. Tan, K. Liao, and L. P. Tan. Mechanical behavior of human mesenchymal stem cells during adipogenic and osteogenic differentiation. Biochem. Biophys. Res. Commun. 393:150–155, 2010.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Tafazzoli-Shadpour.

Additional information

Associate Editor Cheng Dong oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Khani, MM., Tafazzoli-Shadpour, M., Rostami, M. et al. Evaluation of Mechanical Properties of Human Mesenchymal Stem Cells During Differentiation to Smooth Muscle Cells. Ann Biomed Eng 42, 1373–1380 (2014). https://doi.org/10.1007/s10439-013-0889-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-013-0889-0

Keywords

Navigation