Skip to main content

Advertisement

Log in

Susceptibility to Corrosion and In Vitro Biocompatibility of a Laser-Welded Composite Orthodontic Arch Wire

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Composite arch-wire (CoAW) is an arch wire formed by solder connection of nickel titanium shape memory alloy and stainless steel wire. The purpose of the present study was to investigate the biocompatibility of CoAW as an important foundation for its clinical application. The electrochemical corrosion and ion release behavior of CoAW upon immersion in solutions simulating oral cavity conditions were measured to evaluate the corrosion behavior of CoAW. Murine L-929 cells were co-cultured with CoAW extract to evaluate the cytotoxicity of the corrosion products in vitro. Polarization tests indicated that CoAW is resistant to corrosion in the tested artificial saliva (AS)-based solutions (chloric solution, simple AS, fluorinated AS, and protein-containing AS), and the amount of toxic copper ions released after immersion was lower than average daily dietary intake levels. The cytotoxicity experiments demonstrated the in vitro biocompatibility of CoAW. Based on the combined advantages of its base materials CoAW, with its resistance to biocorrosion and in vitro cytocompatibility, is a promising alternative material for use in orthodontic fixation applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Ahn, H. S., M. J. Kim, H. J. Seol, J. H. Lee, H. L. Kim, and Y. H. Kwon. Effect of pH and temperature on orthodontic NiTi wires immersed in acidic fluoride solution. J. Biomed. Mater. Res. B Appl. Biomater. 79(1):7–15, 2006.

    Article  PubMed  Google Scholar 

  2. Anderko, A., N. Sridhar, and D. S. Dunn. A general model for the repassivation potential as a function of multiple aqueous solution species. Corros. Sci. 46:1583–1612, 2004.

    Article  CAS  Google Scholar 

  3. Anusavice, K., and W. B. Saunders. Phillips’ Science of Dental Materials (11th ed.). Philadelphia: W.B. Saunders Co., pp. 57–64, 2003.

    Google Scholar 

  4. Brown, S., and K. Merritt. Fretting corrosion in saline and serum. J. Biomed. Mater. Res. 15:479, 1981.

    Article  CAS  PubMed  Google Scholar 

  5. Brown, S., and K. Merritt. The effect of serum proteins on corrosion rate in vitro. In: Clinical Applications of Biomaterials, edited by A. Lee, and T. Alberktsson. New York: Wiley, 1982, p. 195.

    Google Scholar 

  6. Carroll, W., M. Kelly, and B. Brien. Corrosion behavior of Nitinol wires in body fluid environment. In: International Conference on Shape Memory and Superelastic Technologies, Antwerpen, 1999, pp. 240–249.

  7. Chuttani, H. K., et al. Acute copper sulfate poisoning. Am. J. Med. 39:849–854, 1965.

    Article  CAS  PubMed  Google Scholar 

  8. Clark, G. C. F., and D. F. Williams. The effects of proteins on metallic corrosion. J. Biomed. Mater. Res. 16:125–134, 1982.

    Article  CAS  PubMed  Google Scholar 

  9. Codina, J. C., et al. Comparison of microbial tests for the detection of heavy metal genotoxicity. Arch. Environ. Contam. Toxicol. 29:260–265, 1995.

    Article  CAS  PubMed  Google Scholar 

  10. El Medawar, L., P. Rocher, J. C. Hornez, M. Traisnel, J. Breme, and H. Hildebrand. Electrochemical and cytocompatibility assessment of NITINOL memory shape alloy for orthodontic use. Biomol. Eng. 19:153–160, 2002.

    Article  PubMed  Google Scholar 

  11. Eliades, T., and C. Bourauel. Intraoral aging of orthodontic materials: the picture we miss and its clinical relevance. Am. J. Orthod. Dentofacial Orthop. 127:403–412, 2005.

    Article  PubMed  Google Scholar 

  12. Giacomelli, F. C., C. Giacomelli, A. G. De Oliveira, and A. Spinelli. Effect of electrolytic ZrO2 coatings on the breakdown potential of NiTi wires used as endovascular implants. Mater. Lett. 59(7):754–758, 2005.

    Article  CAS  Google Scholar 

  13. International Organisation for Standardisation. International Standard ISO 10993–12 Biological Evaluation of Medical Devices—Part 12: Sample Preparation and Reference Materials. Geneva: International Organisation for Standardisation, 2002.

    Google Scholar 

  14. International Programme on Chemical Safety. Toxicological evaluation of certain food additives and contaminants. In: The 26th Report of the Joint FAO/WHO Expert Committee on Food Additives. WHO Food Additives Series No. 17, 1982.

  15. Isaacs, H. S. The measurement of the galvanic corrosion of soldered copper using the scanning vibrating electrode technique. Corro. Sci. 28(6):547–558, 1988.

    Article  CAS  Google Scholar 

  16. Kwon, Y. H., H. S. Cho, D. J. Noh, H. I. Kim, and H. K. Kim. Evaluation of the effect of fluoride-containing acetic acid on NiTi wires. J. Biomed. Mater. Res. B Appl. Biomater 72B(1):102–108, 2005.

    Article  CAS  Google Scholar 

  17. Li, H. M., D. Q. Sun, P. Dong, and C. Liu. Microstructures and mechanical properties of laser-welded TiNi shape memory alloy and stainless steel wires. China Weld. 19:1–5, 2010.

    Google Scholar 

  18. Nie, F. L., and S. G. Wang. Comparative study on corrosion resistance and in vitro biocompatibility of bulk nanocrystalline and microcrystalline biomedical 304 stainless steel. Dental Mater. 27:677–683, 2011.

    Article  CAS  Google Scholar 

  19. Ralph, M. D., T. DeBold, and M. J. Johnson. Corrosion of stainless steel. In: Corrosion, edited by J. R. Davis. Materials Park, OH: ASM International, 1987, pp. 561–564.

    Google Scholar 

  20. Schiff, N., B. Grosgogeat, L. Michele, and F. Dalard. Influence of fluoride content and pH on the corrosion resistance of titanium and its alloys. Biomaterials 23(9):1995–2002, 2002.

    Article  CAS  PubMed  Google Scholar 

  21. Schiff, N., B. Grosgogeat, M. L. Michèle, and F. Dalard. Influence of fluoridated mouthwashes on corrosion resistance of orthodontics wires. Biomaterials 25(19):4535–4542, 2004.

    Article  CAS  PubMed  Google Scholar 

  22. Sun, D. Q. and H.M. Li. A new method of TINi shape memory alloy and austenitic stainless steel different kind of material connection, CN Patent CNIO2152017, 2011.

  23. Taira, M., M. Toguchi, Y. Hamada, M. Okazaki, J. Takahashi, R. Ito, et al. Studies on cytotoxicity of nickel ions using C3H10T1/2 fibroblast cells. J. Oral. Rehab. 27:1068–1072, 2000.

    Article  CAS  Google Scholar 

  24. Trombetta, D., M. Mondello, F. Cimino, M. Cristani, S. Pergolizzi, and A. Saija. Toxic effect of nickel in an in vitro model of human oral epithelium. Toxicol. Lett. 159:219–225, 2005.

    Article  CAS  PubMed  Google Scholar 

  25. Upadhyay, D. Corrosion of alloys used in dentistry: a review. Mater. Sci. Eng. A 432:1–11, 2006.

    Article  Google Scholar 

  26. Wang, J. Influence of fluoride and chloride on corrosion behavior of NiTi orthodontic wires. Acta Biomater. 3:807–815, 2007.

    Article  PubMed  Google Scholar 

  27. Wataha, J. Biocompatibility of dental casting alloys: a review. J. Prosthet. Dent. 83:223–234, 2000.

    Article  CAS  PubMed  Google Scholar 

  28. Wever, D. J., A. G. Veldhuizen, J. D. Vries, H. J. Busscher, D. R. Uges, and J. R. Horn. Electrochemical and surface characterization of a nickel–titanium alloy. Biomaterials 19:761–769, 1998.

    Article  CAS  PubMed  Google Scholar 

  29. Wilde, B. E. A critical appraisal of some popular laboratory electron chemical tests for predicting the localized corrosion resistance of stainless alloys in seawater. Corrosion 28:283–291, 1972.

    Article  CAS  Google Scholar 

  30. Zabel, D. D., S. A. Brown, K. Merritt, and J. H. Payer. AES (Auger electron spectroscopy) of stainless steel corroded in saline, in serum and in vivo. J. Biomed. Mater. Res. 22:31–44, 1988.

    Article  CAS  PubMed  Google Scholar 

Download references

Conflicts of interest

All authors and co-authors here declare there is no potential conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xinhua Sun.

Additional information

Associate Editor Eiji Tanaka oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, C., Sun, X., Zhao, S. et al. Susceptibility to Corrosion and In Vitro Biocompatibility of a Laser-Welded Composite Orthodontic Arch Wire. Ann Biomed Eng 42, 222–230 (2014). https://doi.org/10.1007/s10439-013-0885-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-013-0885-4

Keywords

Navigation