Skip to main content
Log in

Tubular Heart Valves from Decellularized Engineered Tissue

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

A novel tissue-engineered heart valve (TEHV) was fabricated from a decellularized tissue tube mounted on a frame with three struts, which upon back-pressure cause the tube to collapse into three coapting “leaflets.” The tissue was completely biological, fabricated from ovine fibroblasts dispersed within a fibrin gel, compacted into a circumferentially aligned tube on a mandrel, and matured using a bioreactor system that applied cyclic distension. Following decellularization, the resulting tissue possessed tensile mechanical properties, mechanical anisotropy, and collagen content that were comparable to native pulmonary valve leaflets. When mounted on a custom frame and tested within a pulse duplicator system, the tubular TEHV displayed excellent function under both aortic and pulmonary conditions, with minimal regurgitant fractions and transvalvular pressure gradients at peak systole, as well as well as effective orifice areas exceeding those of current commercially available valve replacements. Short-term fatigue testing of one million cycles with pulmonary pressure gradients was conducted without significant change in mechanical properties and no observable macroscopic tissue deterioration. This study presents an attractive potential alternative to current tissue valve replacements due to its avoidance of chemical fixation and utilization of a tissue conducive to recellularization by host cell infiltration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Baaijens, F., C. Bouten, S. Hoerstrup, A. Mol, N. Driessen, and R. Boerboom. Functional tissue engineering of the aortic heart valve. Clin. Hemorheol. Microcirc. 33:197–199, 2005.

    PubMed  Google Scholar 

  2. Christie, G. W. Anatomy of aortic heart valve leaflets: the influence of glutaraldehyde fixation on function. Eur. J. Cardiothorac. Surg. 6:S25–S32, 1992.

    Article  PubMed  Google Scholar 

  3. Christie, G. W., and B. G. Barratt-Boyes. Mechanical properties of porcine pulmonary valve leaflets: how do they differ from aortic leaflets? Ann. Thorac. Surg. 60:S195–S199, 1995.

    Article  CAS  PubMed  Google Scholar 

  4. Cox, J. L., N. Ad, K. Myers, M. Gharib, and R. C. Quijano. Tubular heart valves: a new tissue prosthesis design–preclinical evaluation of the 3F aortic bioprosthesis. J. Thorac. Cardiovasc. Surg. 130:520–527, 2005.

    Article  PubMed  Google Scholar 

  5. Dahl, S. L., A. P. Kypson, J. H. Lawson, J. L. Blum, J. T. Strader, Y. Li, R. J. Manson, W. E. Tente, L. DiBernardo, M. T. Hensley, R. Carter, T. P. Williams, H. L. Prichard, M. S. Dey, K. G. Begelman, and L. E. Niklason. Readily available tissue-engineered vascular grafts. Sci. Transl. Med. 3:68ra69, 2011.

    Article  Google Scholar 

  6. Dijkman, P. E., A. Driessen-Mol, L. M. de Heer, J. Kluin, L. A. van Herwerden, B. Odermatt, F. P. Baaijens, and S. P. Hoerstrup. Trans-apical versus surgical implantation of autologous ovine tissue-engineered heart valves. J. Heart Valve Dis. 21:670–678, 2012.

    PubMed  Google Scholar 

  7. Dijkman, P. E., A. Driessen-Mol, L. Frese, S. P. Hoerstrup, and F. P. Baaijens. Decellularized homologous tissue-engineered heart valves as off-the-shelf alternatives to xeno- and homografts. Biomaterials 33:4545–4554, 2012.

    Article  CAS  PubMed  Google Scholar 

  8. Emmert, M. Y., B. Weber, L. Behr, T. Frauenfelder, C. E. Brokopp, J. Grunenfelder, V. Falk, and S. P. Hoerstrup. Transapical aortic implantation of autologous marrow stromal cell-based tissue-engineered heart valves: first experiences in the systemic circulation. JACC. Cardiovasc. Interv. 4:822–823, 2011.

    Article  PubMed  Google Scholar 

  9. Flanagan, T. C., C. Cornelissen, S. Koch, B. Tschoeke, J. S. Sachweh, T. Schmitz-Rode, and S. Jockenhoevel. The in vitro development of autologous fibrin-based tissue-engineered heart valves through optimised dynamic conditioning. Biomaterials 28:3388–3397, 2007.

    Article  CAS  PubMed  Google Scholar 

  10. Flanagan, T. C., J. S. Sachweh, J. Frese, H. Schnoring, N. Gronloh, S. Koch, R. H. Tolba, T. Schmitz-Rode, and S. Jockenhoevel. In vivo remodeling and structural characterization of fibrin-based tissue-engineered heart valves in the adult sheep model. Tissue Eng. A 15:2965–2976, 2009.

    Article  CAS  Google Scholar 

  11. Gerosa, G., V. Tarzia, G. Rizzoli, and T. Bottio. Small aortic annulus: the hydrodynamic performances of 5 commercially available tissue valves. J. Thorac. Cardiovasc. Surg. 131:1058–1064, 2006.

    Article  PubMed  Google Scholar 

  12. Grassl, E. D., T. R. Oegema, and R. T. Tranquillo. A fibrin-based arterial media equivalent. J. Biomed. Mater. Res. A 66A:550–561, 2003.

    Article  CAS  Google Scholar 

  13. Hoerstrup, S. P., R. Sodian, S. Daebritz, J. Wang, E. A. Bacha, D. P. Martin, A. M. Moran, K. J. Guleserian, J. S. Sperling, S. Kaushal, J. P. Vacanti, F. J. Schoen, and J. E. Mayer Jr. Functional living trileaflet heart valves grown in vitro. Circulation 102:III44–III49, 2000.

    Article  CAS  PubMed  Google Scholar 

  14. Isenberg, B. C., and R. T. Tranquillo. Long-term cyclic distention enhances the mechanical properties of collagen-based media-equivalents. Ann. Biomed. Eng. 31:937–949, 2003.

    Article  PubMed  Google Scholar 

  15. Kim, Y. J., R. L. Sah, J. Y. Doong, and A. J. Grodzinsky. Fluorometric assay of DNA in cartilage explants using Hoechst 33258. Anal. Biochem. 174:168–176, 1988.

    Article  CAS  PubMed  Google Scholar 

  16. Nakayama, Y., Y. Yahata, M. Yamanami, T. Tajikawa, K. Ohba, K. Kanda, and H. Yaku. A completely autologous valved conduit prepared in the open form of trileaflets (type VI biovalve): mold design and valve function in vitro. J. Biomed. Mater. Res. B Appl. Biomater. 99:135–141, 2011.

    PubMed  Google Scholar 

  17. Neidert, M. R., and R. T. Tranquillo. Tissue-engineered valves with commissural alignment. Tissue Eng. 12:891–903, 2006.

    Article  PubMed  Google Scholar 

  18. Quint, C., Y. Kondo, R. J. Manson, J. H. Lawson, A. Dardik, and L. E. Niklason. Decellularized tissue-engineered blood vessel as an arterial conduit. Proc. Natl. Acad. Sci. U. S. A. 108:9214–9219, 2011.

    Article  CAS  PubMed  Google Scholar 

  19. Robinson, P. S., S. L. Johnson, M. C. Evans, V. H. Barocas, and R. T. Tranquillo. Functional tissue-engineered valves from cell-remodeled fibrin with commissural alignment of cell-produced collagen. Tissue Eng. A 14:83–95, 2008.

    Article  CAS  Google Scholar 

  20. Rouleau, L., D. Tremblay, R. Cartier, R. Mongrain, and R. L. Leask. Regional variations in canine descending aortic tissue mechanical properties change with formalin fixation. Cardiovasc. Pathol. 21:390–397, 2012.

    Article  PubMed  Google Scholar 

  21. Schmidt, D., P. E. Dijkman, A. Driessen-Mol, R. Stenger, C. Mariani, A. Puolakka, M. Rissanen, T. Deichmann, B. Odermatt, B. Weber, M. Y. Emmert, G. Zund, F. P. Baaijens, and S. P. Hoerstrup. Minimally-invasive implantation of living tissue engineered heart valves: a comprehensive approach from autologous vascular cells to stem cells. J. Am. Coll. Cardiol. 56:510–520, 2010.

    Article  PubMed  Google Scholar 

  22. Shinoka, T., C. K. Breuer, R. E. Tanel, G. Zund, T. Miura, P. X. Ma, R. Langer, J. P. Vacanti, and J. E. Mayer Jr. Tissue engineering heart valves: valve leaflet replacement study in a lamb model. Ann. Thorac. Surg. 60:S513–S516, 1995.

    Article  CAS  PubMed  Google Scholar 

  23. Sodian, R., S. P. Hoerstrup, J. S. Sperling, S. Daebritz, D. P. Martin, A. M. Moran, B. S. Kim, F. J. Schoen, J. P. Vacanti, and J. E. Mayer Jr. Early in vivo experience with tissue-engineered trileaflet heart valves. Circulation 102:III22–III29, 2000.

    Article  CAS  PubMed  Google Scholar 

  24. Stegemann, H., and K. Stalder. Determination of hydroxyproline. Clin. Chim. Acta 18:267–273, 1967.

    Article  CAS  PubMed  Google Scholar 

  25. Stradins, P., R. Lacis, I. Ozolanta, B. Purina, V. Ose, L. Feldmane, and V. Kasyanov. Comparison of biomechanical and structural properties between human aortic and pulmonary valve. Eur. J. Cardiothorac. Surg. 26:634–639, 2004.

    Article  PubMed  Google Scholar 

  26. Syedain, Z. H., A. R. Bradee, S. Kren, D. A. Taylor, and R. T. Tranquillo. Decellularized tissue-engineered heart valve leaflets with recellularization potential. Tissue Eng. A 19:759–769, 2013.

    Article  CAS  Google Scholar 

  27. Syedain, Z., M. T. Lahti, S. Johnson, P. Robinson, G. R. Ruth, R. Bianco, and R. Tranquillo. Implantation of a tissue engineered heart valve from human fibroblasts exhibiting short term function in the sheep pulmonary artery. Cardiovasc. Eng. Technol. 2:101–112, 2011.

    Article  Google Scholar 

  28. Syedain, Z. H., L. A. Meier, J. W. Bjork, A. Lee, and R. T. Tranquillo. Implantable arterial grafts from human fibroblasts and fibrin using a multi-graft pulsed flow-stretch bioreactor with noninvasive strength monitoring. Biomaterials 32:714–722, 2011.

    Article  CAS  PubMed  Google Scholar 

  29. Syedain, Z. H., L. Meier, M. Lahti, S. Johnson, and R. T. Tranquillo. Implantation of completely biological, aligned engineered arteries pre-made from allogeneic fibroblasts in a sheep model. 2013 (submitted).

  30. Syedain, Z. H., and R. T. Tranquillo. Controlled cyclic stretch bioreactor for tissue-engineered heart valves. Biomaterials 30:4078–4084, 2009.

    Article  CAS  PubMed  Google Scholar 

  31. Syedain, Z. H., and R. T. Tranquillo. TGF-beta1 diminishes collagen production during long-term cyclic stretching of engineered connective tissue: implication of decreased ERK signaling. J. Biomech. 44:848–855, 2011.

    Article  PubMed  Google Scholar 

  32. Syedain, Z. H., J. S. Weinberg, and R. T. Tranquillo. Cyclic distension of fibrin-based tissue constructs: evidence of adaptation during growth of engineered connective tissue. Proc. Natl. Acad. Sci. U. S. A. 105:6537–6542, 2008.

    Article  CAS  PubMed  Google Scholar 

  33. Tower, T. T., M. R. Neidert, and R. T. Tranquillo. Fiber alignment imaging during mechanical testing of soft tissues. Ann. Biomed. Eng. 30:1221–1233, 2002.

    Article  PubMed  Google Scholar 

  34. Weber, B., J. Scherman, M. Y. Emmert, J. Gruenenfelder, R. Verbeek, M. Bracher, M. Black, J. Kortsmit, T. Franz, R. Schoenauer, L. Baumgartner, C. Brokopp, I. Agarkova, P. Wolint, G. Zund, V. Falk, P. Zilla, and S. P. Hoerstrup. Injectable living marrow stromal cell-based autologous tissue engineered heart valves: first experiences with a one-step intervention in primates. Eur. Heart J. 32:2830–2840, 2011.

    Article  PubMed  Google Scholar 

  35. Williams, C., S. L. Johnson, P. S. Robinson, and R. T. Tranquillo. Cell sourcing and culture conditions for fibrin-based valve constructs. Tissue Eng. 12:1489–1502, 2006.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Authors will like to thank Naomi Ferguson, and Jillian Schmidt for technical assistance and Dave Hultman Design for machining the custom pulse duplicator system, bioreactor manifold and valve frames. The funding for the work was provided by NIH R01 HL107572 (to RTT).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert T. Tranquillo.

Additional information

Associate Editor Jane Grande-Allen oversaw the review of this article.

Zeeshan H. Syedain and Lee A. Meier are the co-first authors.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Syedain, Z.H., Meier, L.A., Reimer, J.M. et al. Tubular Heart Valves from Decellularized Engineered Tissue. Ann Biomed Eng 41, 2645–2654 (2013). https://doi.org/10.1007/s10439-013-0872-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-013-0872-9

Keywords

Navigation