Skip to main content
Log in

Force Corridors of Post Mortem Human Surrogates in Oblique Side Impacts from Sled Tests

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

To develop region-specific force corridors in side impacts under oblique loadings using post mortem human surrogates (PMHS). Unembalmed PMHS were positioned on a sled. Surrogates contacted a segmented, modular/ scalable load-wall to isolate region-specific forces (shoulder, thorax, abdomen, pelvis). Heights and widths of segmented load-wall plates were adjustable in sagittal and coronal planes to accommodate anthropometry variations. Load cells were used to gather region-specific forces. Tests were conducted at 6.7 m/s. Peak forces and times of attainments, and standard corridors (mean ± 1 SD) are given for the four torso regions and summated forces. The mean age, stature, and total body mass of the five male PMHS were: 56.6 ± 4.4 years, 183 ± 3.5 cm and 70.6 ± 9.0 kg. Peak pelvis forces were the greatest, followed by thorax, abdomen and shoulder. Sequence of times of attainments of peak forces initiating from pelvis increased rostrally to abdomen to thorax and shoulder regions. Corridors were tight in all regions, except shoulder. As previous force corridors were based solely on pure-lateral impacts and region-specific forces were not extracted, the present oblique responses using anthropometry-specific load-wall design can be used to develop injury criteria and evaluate the biofidelity of dummies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Bolte, J. H. I., M. H. Hines, J. D. McFadden, and R. A. Saul. Shoulder response characteristics and injury due to lateral glenohumeral joint impacts. Stapp Car Crash J. 44:261–280, 2000.

    PubMed  Google Scholar 

  2. Cavanaugh, J., Y. Zhu, Y. Huang, and A. King. Injury and response of thorax in side impact cadaveric tests. In: Proceedings of 37th Stapp Car Crash Conference. San Antonio, TX: Society of Automotive Engineers, 1993, pp. 199–221.

  3. Cavanaugh, J. M., Y. Zhu, Y. Huang, and A. I. King. Injury and response of the thorax in side impact cadaveric tests. In: Biomechanics of Impact Injury and Injury Tolerances of the Thorax–Shoulder Complex, edited by S. H. Backaitis, and W. H. Mertz. Warrendale, PA: SAE Inc., 1994, pp. 949–972.

    Google Scholar 

  4. Cavanaugh, J., T. Walilko, J. Chung, and A. King. Abdominal injury and response in side impact. In: Stapp Car Crash Conference, Albuquerque, NM, 1996, pp. 1–16.

  5. Cavanaugh, J. M., T. J. Walilko, A. Malhotra, Y. Zhu, and A. I. King. Biomechanical response and injury tolerance of the thorax in twelve sled side impacts. In: Proceedings of 34th Stapp Car Crash Conference, Orlando, FL, 1990, pp. 23–38.

  6. Cesari, D., M. Ramet, and J. Bloch. Influence of arm position on thoracic injuries in side impact. In: Stapp Car Crash Conference, San Francisco, CA, 1981.

  7. Chung, J., J. Cavanaugh, A. King, S. Koh, and Y. Deng. Thoracic injury mechanisms and biomechanical responses in lateral velocity pulse impacts. In: Stapp Car Crash Conference, San Diego, CA, 1999, pp. 39–54.

  8. Eppinger, R. Prediction of thoracic injury using measurable experimental parameters. In: 6th International Conference on Experimental Safety Vehicles, NHTSA, Washington, DC, 1976, p. 770.

  9. FMVSS-214. 49Code of Federal Regulations: 571.214. Washington, DC: US Government Printing Office, 2008.

  10. Instrumentation for Impact Test. Part 1—Electronic Instrumentation-SAE J211/1. Warrendale, PA: Society of Automotive Engineers (SAE), 2003.

  11. Irwin, A. L., A. Sutterfield, T. P. Hsu, A. Kim, H. J. Mertz, S. W. Rouhana, and R. Scherer. Side Impact Response Corridors for the Rigid Flat-Wall and Offset-Wall Side Impact Tests of NHTSA Using the ISO Method of Corridor Development. Stapp Car Crash J. 49:423–456, 2005.

    PubMed  Google Scholar 

  12. Irwin, A., T. Walilko, J. Cavanaugh, Y. Zhu, and A. King. Displacement responses of the shoulder and thorax in lateral sled impacts. In: Stapp Car Crash Conference, San Antonio, TX, 1993, pp. 166–173.

  13. ISO. ISO/TR9790—Road vehicles-lateral impact response requirements to assess the biofidelity of the dummy. No. ISO TR 9790-5, ISO/TC22/SC12/WG5: Document N455—Revision 4, May 1997.

  14. Kallieris, D., R. Mattern, G. Schmidt, and R. H. Eppinger. Quantification of side impact responses and injuries. In: Stapp Car Crash Conference, Society of Automotive Engineers, Inc., San Francisco, CA, 1981, pp. 329–368.

  15. Kemper, A. R., C. McNally, E. A. Kennedy, S. J. Manoogian, and S. M. Duma. The influence of arm position on thoracic response in side impacts. Stapp Car Crash J. 52:379–420, 2008.

    PubMed  Google Scholar 

  16. Koh, S. W., J. M. Cavanaugh, and J. Zhu. Injury and response of the shoulder in lateral sled tests. Stapp Car Crash J. 45:101–142, 2001.

    PubMed  CAS  Google Scholar 

  17. Kuppa, S., F. Eppinger, M. Maltese, R. Naik, N. Yoganandan, F. Pintar, R. Saul, and J. McFadden. Assessment of Thoracic Injury Criteria for Side Impact. Montpellier, France: IRCOBI, 2000, pp. 131–146.

  18. Kuppa, S., R. H. Eppinger, F. McKoy, T. Nguyen, F. A. Pintar, and N. Yoganandan. Development of side impact thoracic injury criteria and their application to the modified ES-2 dummy with rib extensions (ES-2re). Stapp Car Crash J. 47:189–210, 2003.

    PubMed  Google Scholar 

  19. Lessley, D., G. Shaw, D. Parent, C. Arregui-Dalmases, M. Kindig, P. Riley, S. Purtsezov, M. Sochor, T. Gochenour, J. Bolton, D. Subit, J. Crandall, S. Takayama, K. Ono, K. Kamiji, and T. Yasuki. Whole-body response to pure lateral impact. Stapp Car Crash J. 54:289–336, 2010.

    PubMed  Google Scholar 

  20. Maltese, M. R., R. H. Eppinger, H. H. Rhule, B. R. Donnelly, F. A. Pintar, and N. Yoganandan. Response corridors of human surrogates in lateral impacts. Stapp Car Crash J. 46:321–351, 2002.

    PubMed  Google Scholar 

  21. Miller, C., and J. Rupp. PMHS Impact Response in Low and High-Speed Nearside Impacts, Wahington, DC, 2011.

  22. Moorhouse, K., B. Donnelly, Y. Kang, J. Bolte, and R. Herriott. Evaluation of the internal and external biofidelity of current rear impact ATDs to response targets developed from moderate-speed rear impacts of PMHS. Stapp Car Crash J. 56:171–229, 2012.

    PubMed  Google Scholar 

  23. Pintar, F. A., D. J. Maiman, and N. Yoganandan. Injury patterns in side pole crashes. Annu. Proc. Assoc. Adv. Automot. Med. 51:419–433, 2007.

    PubMed  Google Scholar 

  24. Pintar, F. A., D. J. Maiman, and N. Yoganandan. Occupant Dynamics and Injuries in Narrow-Object Side Impact. Lyon, France: Experimental Safety of Vehicles, 2007.

  25. Pintar, F. A., N. Yoganandan, M. H. Hines, M. R. Maltese, J. McFadden, R. Saul, R. Eppinger, N. Khaewpong, and M. Kleinberger. Chestband analysis of human tolerance to side impact. In: Stapp Car Crash Conference, Lake Buena Vista, FL, 1997, pp. 63–74.

  26. Pintar, F. A., N. Yoganandan, A. Sances, and R. Eppinger. Instrumentation of human surrogates for side impact. In: Stapp Car Crash Conference, Albuquerque, NM, 1996, pp. 29–42.

  27. Rhule, H. H., M. R. Maltese, B. R. Donnelly, R. H. Eppinger, J. K. Brunner, and J. H. Bolte. Development of a new biofidelity ranking system for anthropomorphic test devices. Stapp Car Crash J. 46:477–512, 2002.

    PubMed  Google Scholar 

  28. Rhule, H. H., K. Moorhouse, B. Donnelly, and J. Stricklin. Comparison of WorldSID and ES2-re Biofidelity Using an Updated Biofidelity Ranking System. Stuttgart, Germany: Experimental Safety of Vehicles, 2009.

  29. Robbins, D., R. Lehman, and K. Augustyn. Prediction of thoracic injuries as a function of occupant kinematics. In: Biomechanics of Impact Injury and Injury Tolerances of the Thorax–Shoulder Complex, edited by S. Backaitis. Warrendale, PA: SAE, Inc., 1994, pp. 1109–1118.

    Google Scholar 

  30. Rockwood, Jr., C. A., C. Green, D. Bucholz, R. Heckman, and D. James. Rockwood and Green’s Fractures in Adults. Philadelphia, PA: Lippincott-Raven, 1996.

  31. Scherer, R., K. Bortenschlager, A. Akiyama, S. Tylko, M. Hartlieb, and T. Harigae. WorldSID Production Dummy Biomechanical Responses. Stuttgart, Germany: Experimental Safety of Vehicles, 2009.

  32. Shaw, J. M., R. G. Herriott, J. D. McFadden, B. R. Donnelly, and J. H. Bolte, IV. Oblique and lateral impact response of the PMHS thorax. Stapp Car Crash J. 50:147–167, 2006.

    PubMed  Google Scholar 

  33. Viano, D. Biomechanical responses and injuries in blunt lateral impact. In: Stapp Car Crash Conference, Washington, DC, 1989, pp. 113–142.

  34. Yoganandan, N., J. R. Humm, and F. A. Pintar. Modular and scalable load-wall sled buck for pure-lateral and oblique side impact tests. J. Biomech. 45(8):1546–1549, 2012.

    Article  PubMed  Google Scholar 

  35. Yoganandan, N., and F. A. Pintar. Deflections from two types of human surrogates in oblique side impacts. Annu. Adv. Automot. Med. 52:301–313, 2008.

    Google Scholar 

  36. Yoganandan, N., F. A. Pintar, and T. A. Gennarelli. Chest Injuries and Injury Mechanisms in Oblique Lateral Impacts. Maastricht, The Netherlands: IRCOBI, 2007.

  37. Yoganandan, N., F. A. Pintar, T. A. Gennarelli, P. G. Martin, and S. A. Ridella. Chest deflections and injuries in oblique lateral impacts. Traffic Inj. Prev. 9(2):162–167, 2008.

    Article  PubMed  Google Scholar 

  38. Yoganandan, N., F. A. Pintar, J. Humm, K. Brasel, R. W. Rudd, and S. A. Ridella. Thoraco-abdominal deflection responses of PMHS in side impacts. Stapp Car Crash J. 56:49–64, 2012.

    PubMed  Google Scholar 

  39. Yoganandan, N., F. A. Pintar, D. Skrade, W. Chmiel, J. Reinartz, and A. Sances, Jr. Thoracic biomechanics with air bag restraint. SAE Trans. 102(6):2597–2607, 1994.

    Google Scholar 

  40. Yoganandan, N., F. A. Pintar, B. D. Stemper, T. A. Gennarelli, and J. A. Weigelt. Biomechanics of side impact: injury criteria, aging occupants, and airbag technology. J. Biomech. 40(2):227–243, 2007.

    Article  PubMed  Google Scholar 

  41. Zhu, J., J. Cavanaugh, and A. King. Pelvic biomechanical response and padding benefits in side impact based on cadaveric test series. In: Proceedings of 37th Stapp Car Crash Conference, Society of Automotive Engineers, San Antonio TX, 1993, pp. 223–233.

Download references

Acknowledgments

This study was supported in part by DTNH22-07-H-00173, the Department of Neurosurgery at the Medical College of Wisconsin and VA Medical Research. The authors acknowledge the assistance of Rodney Rudd and Stephen Ridella of NHTSA, and Paul Gromowski and other staff of the Neuroscience Research Laboratories.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Narayan Yoganandan.

Additional information

Associate Editor Stefan M. Duma oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yoganandan, N., Humm, J.R. & Pintar, F.A. Force Corridors of Post Mortem Human Surrogates in Oblique Side Impacts from Sled Tests. Ann Biomed Eng 41, 2391–2398 (2013). https://doi.org/10.1007/s10439-013-0847-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-013-0847-x

Keywords

Navigation