Skip to main content
Log in

Near Infrared Spectroscopic Evaluation of Water in Hyaline Cartilage

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

In diseased conditions of cartilage such as osteoarthritis, there is typically an increase in water content from the average normal of 60–85% to greater than 90%. As cartilage has very little capability for self-repair, methods of early detection of degeneration are required, and assessment of water could prove to be a useful diagnostic method. Current assessment methods are either destructive, time consuming, or have limited sensitivity. Here, we investigated the hypotheses that non-destructive near infrared spectroscopy (NIRS) of articular cartilage can be used to differentiate between free and bound water, and to quantitatively assess water content. The absorbances centered at 5200 and 6890 cm−1 were attributed to a combination of free and bound water, and to free water only, respectively. The integrated areas of both absorbance bands were found to correlate linearly with the absolute water content (R = 0.87 and 0.86) and with percent water content (R = 0.97 and 0.96) of the tissue. Partial least square models were also successfully developed and were used to predict water content, and percent free water. These data demonstrate that NIRS can be utilized to quantitatively determine water content in articular cartilage, and may aid in early detection of degenerative tissue changes in a laboratory setting, and with additional validations, possibly in a clinical setting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Afara, I., I. Prasadam, R. Crawford, Y. Xiao, and A. Oloyede. Non-destructive evaluation of articular cartilage defects using near-infrared (NIR) spectroscopy in osteoarthritic rat models and its direct relation to Mankin score. Osteoarthr. Cartil. 20(11):1367–1373, 2012.

    Article  PubMed  CAS  Google Scholar 

  2. Afara, I., S. Singh, and A. Oloyede. Application of near infrared (NIR) spectroscopy for determining the thickness of articular cartilage. Med. Eng. Phys. 35(1):88–95, 2012.

    Article  PubMed  Google Scholar 

  3. Arimoto, H., and M. Egawa. Non-contact skin moisture measurement based on near-infrared spectroscopy. Appl. Spectrosc. 58:1439–1446, 2004.

    Article  PubMed  CAS  Google Scholar 

  4. Arimoto, H., M. Egawa, and Y. Yamada. Depth profile of diffuse reflectance near-infrared spectroscopy for measurement of water content in skin. Skin Res. Technol. 11:27–35, 2005.

    Article  PubMed  Google Scholar 

  5. Armstrong, C. G., and V. C. Mow. Variations in the intrinsic mechanical properties of human articular cartilage with age, degeneration, and water content. J. Bone Joint Surg. Am. 64:88–94, 1982.

    PubMed  CAS  Google Scholar 

  6. Bagratashvili, V. N., E. N. Sobol, A. P. Sviridov, V. K. Popov, A. I. Omel’chenko, and S. M. Howdle. Thermal and diffusion processes in laser-induced stress relaxation and reshaping of cartilage. J. Biomech. 30:813–817, 1997.

    Article  PubMed  CAS  Google Scholar 

  7. Batty, L., S. Dance, S. Bajaj, and B. J. Cole. Autologous chondrocyte implantation: an overview of technique and outcomes. ANZ J. Surg. 81:18–25, 2011.

    Article  PubMed  Google Scholar 

  8. Baykal, D., O. Irrechukwu, P. C. Lin, K. Fritton, R. G. Spencer, and N. Pleshko. Nondestructive assessment of engineered cartilage constructs using near-infrared spectroscopy. Appl. Spectrosc. 64:1160–1166, 2010.

    Article  PubMed  CAS  Google Scholar 

  9. Blanco, M., J. Coello, H. Iturriaga, S. Maspoch, and C. de la Pezuela. Near-infrared spectroscopy in the pharmaceutical industry. Analyst 123:135R–150R, 1998.

    Article  PubMed  CAS  Google Scholar 

  10. Bock, J. E., and R. K. Connelly. Innovative uses of near-infrared spectroscopy in food processing. J. Food Sci. 73:R91–R98, 2008.

    Article  PubMed  CAS  Google Scholar 

  11. Brown, C. P., J. C. Bowden, L. Rintoul, R. Meder, A. Oloyede, and R. W. Crawford. Diffuse reflectance near infrared spectroscopy can distinguish normal from enzymatically digested cartilage. Phys. Med. Biol. 54:5579–5594, 2009.

    Article  PubMed  CAS  Google Scholar 

  12. Brown, C. P., C. Jayadev, S. Glyn-Jones, A. J. Carr, D. W. Murray, A. J. Price, and H. S. Gill. Characterization of early stage cartilage degradation using diffuse reflectance near infrared spectroscopy. Phys. Med. Biol. 56:2299–2307, 2011.

    Article  PubMed  CAS  Google Scholar 

  13. Brown, C. P., A. Oloyede, R. W. Crawford, G. E. R. Thomas, A. J. Price, and H. S. Gill. Acoustic, mechanical and near-infrared profiling of osteoarthritic progression in bovine joints. Phys. Med. Biol. 57:14, 2012.

    Article  Google Scholar 

  14. Büning-Pfaue, H. Analysis of water in food by near infrared spectroscopy. Food Chem. 82:9, 2003.

    Article  Google Scholar 

  15. Cachet, T., and J. Hoogmartens. The determination of water in erythromycin by Karl Fischer titration. J. Pharm. Biomed. Anal. 6:461–472, 1988.

    Article  PubMed  CAS  Google Scholar 

  16. Canvin, J. M., S. Bernatsky, C. A. Hitchon, M. Jackson, M. G. Sowa, J. R. Mansfield, H. H. Eysel, H. H. Mantsch, and H. S. El-Gabalawy. Infrared spectroscopy: shedding light on synovitis in patients with rheumatoid arthritis. Rheumatology (Oxford) 42:76–82, 2003.

    Article  CAS  Google Scholar 

  17. Caplan, A. I., M. Elyaderani, Y. Mochizuki, S. Wakitani, and V. M. Goldberg. Principles of cartilage repair and regeneration. Clin. Orthop. Relat. Res. 342:254–269, 1997.

    Article  PubMed  Google Scholar 

  18. Chan, D. D., and C. P. Neu. Probing articular cartilage damage and disease by quantitative magnetic resonance imaging. J. R. Soc. Interface 10:78, 2013.

    Google Scholar 

  19. Czarnik-Matusewicz, B., S. Pilorz, and J. P. Hawranek. Temperature-dependent water structural transitions examined by near-IR and mid-IR spectra analyzed by multivariate curve resolution and two-dimensional correlation spectroscopy. Anal. Chim. Acta 544:15–25, 2005.

    Article  CAS  Google Scholar 

  20. Diekman, B. O., and F. Guilak. Stem cell-based therapies for osteoarthritis: challenges and opportunities. Curr. Opin. Rheumatol. 25:119–126, 2013.

    Article  PubMed  CAS  Google Scholar 

  21. Dijkgraaf, L. C., L. G. de Bont, G. Boering, and R. S. Liem. Normal cartilage structure, biochemistry, and metabolism: a review of the literature. J. Oral Maxillofac. Surg. 53:924–929, 1995.

    Article  PubMed  CAS  Google Scholar 

  22. Ding, C., F. Cicuttini, and G. Jones. How important is MRI for detecting early osteoarthritis? Nat. Clin. Pract. Rheumatol. 4:4–5, 2008.

    Article  PubMed  Google Scholar 

  23. Duda, G. N., R. U. Kleemann, U. Bluecher, and A. Weiler. A new device to detect early cartilage degeneration. Am. J. Sports Med. 32:693–698, 2004.

    Article  PubMed  Google Scholar 

  24. Esbensen, K. H. Multivariate Data Analysis in Practice: An Introduction to Multivariate Data Analysis and Experimental Design. Woodbridge: CAMO Software, 2010.

    Google Scholar 

  25. Gill, T. J. The treatment of articular cartilage defects using microfracture and debridement. Am. J. Knee Surg. 13:33, 2000.

    PubMed  CAS  Google Scholar 

  26. Hanifi, A., X. Bi, X. Yang, B. Kavukcuoglu, P. C. Lin, E. Dicarlo, R. G. Spencer, M. P. Bostrom, and N. Pleshko. Infrared fiber optic probe evaluation of degenerative cartilage correlates to histological grading. Am. J. Sports Med. 40(12):2853–2861, 2012.

    Article  PubMed  Google Scholar 

  27. Hofmann, G. O., J. Marticke, R. Grossstuck, M. Hoffmann, M. Lange, H. K. Plettenberg, R. Braunschweig, O. Schilling, I. Kaden, and G. Spahn. Detection and evaluation of initial cartilage pathology in man: a comparison between MRT, arthroscopy and near-infrared spectroscopy (NIR) in their relation to initial knee pain. Pathophysiology 17:1–8, 2010.

    Article  PubMed  Google Scholar 

  28. Howell, D. Etiopathogenesis of osteoarthritis. In: Arthritis and Allied Conditions, edited by D. J. McCarty. Philadelphia: Lea and Febiger, 1989.

    Google Scholar 

  29. Hunziker, E. B. Articular cartilage repair: basic science and clinical progress. A review of the current status and prospects. Osteoarthr. Cartil. 10:432–463, 2002.

    Article  PubMed  CAS  Google Scholar 

  30. Jaffe, F. F., H. J. Mankin, C. Weiss, and A. Zarins. Water binding in the articular cartilage of rabbits. J. Bone Joint Surg. Am. 56:1031–1039, 1974.

    PubMed  CAS  Google Scholar 

  31. Koff, M. F., K. K. Amrami, and K. R. Kaufman. Clinical evaluation of T2 values of patellar cartilage in patients with osteoarthritis. Osteoarthr. Cartil. 15:198–204, 2007.

    Article  PubMed  CAS  Google Scholar 

  32. Lawrence, R. C., C. G. Helmick, F. C. Arnett, R. A. Deyo, D. T. Felson, E. H. Giannini, S. P. Heyse, R. Hirsch, M. C. Hochberg, G. G. Hunder, M. H. Liang, S. R. Pillemer, V. D. Steen, and F. Wolfe. Estimates of the prevalence of arthritis and selected musculoskeletal disorders in the united states. Arthr. Rheum. 41:778–799, 1998.

    Article  CAS  Google Scholar 

  33. Li, G., M. Thomson, E. Dicarlo, X. Yang, B. Nestor, M. P. Bostrom, and N. P. Camacho. A chemometric analysis for evaluation of early-stage cartilage degradation by infrared fiber-optic probe spectroscopy. Appl. Spectrosc. 59:1527–1533, 2005.

    Article  PubMed  CAS  Google Scholar 

  34. Libnau, F. O., O. M. Kvalheim, A. A. Christy, and J. Toft. Spectra of water in the near- and mid-infrared region. Vib Spectosc 7:243–254, 1994.

    Article  CAS  Google Scholar 

  35. Lin, P. C., O. Irrechukwu, R. Roque, B. Hancock, K. W. Fishbein, and R. G. Spencer. Multivariate analysis of cartilage degradation using the support vector machine algorithm. Magn. Reson. Med. 67:1815–1826, 2011.

    Article  PubMed  Google Scholar 

  36. Lin, P.-C., D. A. Reiter, and R. G. Spencer. Classification of degraded cartilage through multiparametric MRI analysis. J. Magn. Reson. 201:61–71, 2009.

    Article  PubMed  CAS  Google Scholar 

  37. Luck, W. A. P. Structure of water and aqueous solutions. In: Proceedings of the International Symposium held at Marburg in July 1973, edited by W. A. P. Luck. Marburg, 1974.

  38. Lusse, S., H. Claassen, T. Gehrke, J. Hassenpflug, M. Schunke, M. Heller, and C. C. Gluer. Evaluation of water content by spatially resolved transverse relaxation times of human articular cartilage. Magn. Reson. Imaging 18:423–430, 2000.

    Article  PubMed  CAS  Google Scholar 

  39. Mankin, H. J., and A. Z. Thrasher. Water content and binding in normal and osteoarthritic human cartilage. J. Bone Joint Surg. Am. 57:76–80, 1975.

    PubMed  CAS  Google Scholar 

  40. Marik, W., S. Apprich, G. Welsch, T. Mamisch, and S. Trattnig. Biochemical evaluation of articular cartilage in patients with osteochondrosis dissecans by means of quantitative T2-and T2*-mapping at 3t MRI: a feasibility study. Eur. J. Radiol. 81:923–927, 2012.

    Article  PubMed  CAS  Google Scholar 

  41. Maroudas, A. Distribution and diffusion of solutes in articular cartilage. Biophys. J. 10:365–379, 1970.

    Article  PubMed  CAS  Google Scholar 

  42. Maroudas, A., M. T. Bayliss, N. Uchitel-Kaushansky, R. Schneiderman, and E. Gilav. Aggrecan turnover in human articular cartilage: use of aspartic acid racemization as a marker of molecular age. Arch. Biochem. Biophys. 350:61–71, 1998.

    Article  PubMed  CAS  Google Scholar 

  43. Marticke, J. K., A. Hosselbarth, K. L. Hoffmeier, I. Marintschev, S. Otto, M. Lange, H. K. Plettenberg, G. Spahn, and G. O. Hofmann. How do visual, spectroscopic and biomechanical changes of cartilage correlate in osteoarthritic knee joints? Clin. Biomech. 25:332–340, 2010.

    Article  Google Scholar 

  44. Martin, K. In vivo measurements of water in skin by near-infrared reflectance. Appl. Spectrosc. 52:1001–1007, 1998.

    Article  CAS  Google Scholar 

  45. Nicolai, B. M., K. Beullens, E. Bobelyn, A. Peirs, W. Saeys, K. I. Theron, and J. Lammertyn. Nondestructive measurement of fruit and vegetable quality by means of NIR spectroscopy: a review. Postharvest Biol. Technol. 46:99–118, 2007.

    Article  Google Scholar 

  46. O’Malley, M. J., and C. R. Chu. Arthroscopic optical coherence tomography in diagnosis of early arthritis. Minim. Invasive Surg. 2011:6, 2011.

    Google Scholar 

  47. Peterfy, C. G. Scratching the surface: articular cartilage disorders in the knee. Magn. Reson. Imaging Clin. N. Am. 8:409–430, 2000.

    PubMed  CAS  Google Scholar 

  48. Platt, D., J. L. Bird, and M. T. Bayliss. Ageing of equine articular cartilage: structure and composition of aggrecan and decorin. Equine Vet. J. 30:43–52, 1998.

    Article  PubMed  CAS  Google Scholar 

  49. Poole, A. R., T. Kojima, T. Yasuda, F. Mwale, M. Kobayashi, and S. Laverty. Composition and structure of articular cartilage: a template for tissue repair. Clin. Orthop. Relat. Res. 391:S26–S33, 2001.

    Article  PubMed  Google Scholar 

  50. Recht, M. P., D. W. Goodwin, C. S. Winalski, and L. M. White. MRI of articular cartilage: revisiting current status and future directions. AJR 185:899–914, 2005.

    Article  PubMed  Google Scholar 

  51. Reiter, D. A., P. C. Lin, K. W. Fishbein, and R. G. Spencer. Multicomponent T2 relaxation analysis in cartilage. Magn. Reson. Med. 61:803–809, 2009.

    Article  PubMed  Google Scholar 

  52. Ressler, N., Ziauddin, C. Vygantas, W. Janzen, and K. Karachorlu. Improved techniques for near-infrared study of water binding by globular proteins and intact tissues. Appl. Spectrosc. 30:295–302, 1976.

    Article  CAS  Google Scholar 

  53. Shiomi, T., T. Nishii, K. Nakata, S. Tamura, H. Tanaka, Y. Yamazaki, K. Murase, H. Yoshikawa, and N. Sugano. Three-dimensional topographical variation of femoral cartilage T2 in healthy volunteer knees. Skelet. Radiol. 42:363–370, 2012.

    Article  Google Scholar 

  54. Sovani, S., and S. P. Grogan. Osteoarthritis: detection, pathophysiology, and current/future treatment strategies. Orthop. Nurs. 32:25–36, 2013.

    Article  PubMed  Google Scholar 

  55. Spahn, G., H. Plettenberg, E. Kahl, H. M. Klinger, T. Muckley, and G. O. Hofmann. Near-infrared (NIR) spectroscopy. A new method for arthroscopic evaluation of low grade degenerated cartilage lesions. Results of a pilot study. BMC Musculoskelet. Disord. 8:47, 2007.

    Article  PubMed  Google Scholar 

  56. Spahn, G., H. Plettenberg, H. Nagel, E. Kahl, H. M. Klinger, M. Gunther, T. Muckley, and G. O. Hofmann. Karl Fischer titration and coulometry for measurement of water content in small cartilage specimens. Biomed. Tech. (Berl.) 51:355–359, 2006.

    Article  CAS  Google Scholar 

  57. Spahn, G., H. Plettenberg, H. Nagel, E. Kahl, H. M. Klinger, T. Muckley, M. Gunther, G. O. Hofmann, and J. A. Mollenhauer. Evaluation of cartilage defects with near-infrared spectroscopy (NIR): an ex vivo study. Med. Eng. Phys. 30:285–292, 2008.

    Article  PubMed  Google Scholar 

  58. Torzilli, P. A. Water Content and Solute Diffusion Properties in Articular Cartilage. New York: Springer-Verlag, 1990.

    Google Scholar 

  59. Torzilli, P. A., T. C. Adams, and R. J. Mis. Transient solute diffusion in articular cartilage. J. Biomech. 20:203–214, 1987.

    Article  PubMed  CAS  Google Scholar 

  60. Vandermeulen, D. L., and N. Ressler. A near-infrared analysis of water-macromolecule interactions: hydration and the spectra of aqueous solutions of intact proteins. Arch. Biochem. Biophys. 199:197–205, 1980.

    Article  PubMed  CAS  Google Scholar 

  61. Walling, P. L., and J. M. Dabney. Moisture in skin by near-infrared reflectance spectroscopy. J. Soc. Cosmet. Chem. 40:151–171, 1989.

    CAS  Google Scholar 

  62. Wei, L., O. Svensson, and A. Hjerpe. Correlation of morphologic and biochemical changes in the natural history of spontaneous osteoarthrosis in guinea pigs. Arthrit. Rheum. 40:2075–2083, 1997.

    Article  CAS  Google Scholar 

  63. West, P. A., M. P. Bostrom, P. A. Torzilli, and N. P. Camacho. Fourier transform infrared spectral analysis of degenerative cartilage: an infrared fiber optic probe and imaging study. Appl. Spectrosc. 58:376–381, 2004.

    Article  PubMed  CAS  Google Scholar 

  64. Xia, Y. MRI of articular cartilage at microscopic resolution. BJR 2:9–17, 2013.

    PubMed  CAS  Google Scholar 

  65. Yin, J., and Y. Xia. Macromolecular concentrations in bovine nasal cartilage by Fourier transform infrared imaging and principal component regression. Appl. Spectrosc. 64:1199, 2010.

    Article  PubMed  CAS  Google Scholar 

  66. Zhou, G. X., Z. Ge, J. Dorwart, B. Izzo, J. Kukura, G. Bicker, and J. Wyvratt. Determination and differentiation of surface and bound water in drug substances by near infrared spectroscopy. J. Pharm. Sci. 92:1058–1065, 2003.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by NIH AR056145 and EB000744 and the Intramural Research Program at NIA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Pleshko.

Additional information

Associate Editor James Tunnell oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Padalkar, M.V., Spencer, R.G. & Pleshko, N. Near Infrared Spectroscopic Evaluation of Water in Hyaline Cartilage. Ann Biomed Eng 41, 2426–2436 (2013). https://doi.org/10.1007/s10439-013-0844-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-013-0844-0

Keywords

Navigation