Annals of Biomedical Engineering

, Volume 41, Issue 11, pp 2399–2408 | Cite as

A New Method to Determine Rate-dependent Material Parameters of Corneal Extracellular Matrix

Article

Abstract

The cornea protects internal ocular contents against external insults while refracting and transmitting the incoming light onto the lens. The biomechanical properties of the cornea are largely governed by the composition and structure of the stromal layer which is an extracellular matrix composed of collagen fibrils embedded in a hydrated soft matrix. The mechanical behavior of the corneal stroma has commonly been characterized using uniaxial tensile tests and inflation experiments. In the present study, unconfined compression experiments were used to investigate the influence of loading rates on compressive behavior of nineteen porcine corneal specimens. The experiments were performed at ramp displacement rates 0.15 μm/s (eight samples), 0.5 μm/s (six samples), and 1.0 μm/s (five samples). For all tests, a maximum compressive strain of 50% (five strain increments of 4% followed by three strain increments of 10%) was selected. The experimental data was analyzed by a transversely isotropic biphasic model and material parameters, i.e., the in-plane Young’s modulus, the out-of-plane Young’s modulus, and the permeability coefficient were calculated. It was observed that while the permeability coefficient decreased exponentially with increasing compressive strain, the in-plane and out-of-plane Young’s moduli increased exponentially with increasing strain. Furthermore, it was found that the equilibrium stress was almost rate independent.

Keywords

Unconfined compression Transversely isotropic biphasic model Stress relaxation experiments Porcine corneal stroma 

References

  1. 1.
    Anderson, K., A. El-Sheikh, and T. Newson. Application of structural analysis to the mechanical behaviour of the cornea. J. R. Soc. Lond. Interface 1:3–15, 2004.CrossRefGoogle Scholar
  2. 2.
    Armstrong, C. G., W. M. Lai, and V. C. Mow. An analysis of the unconfined compression of articular cartilage. J. Biomech. Eng. 106:165–173, 1984.PubMedCrossRefGoogle Scholar
  3. 3.
    Bartholomew, L. R., D. X. Pang, D. A. Sam, and J. C. Cavender. Ultrasound biomicroscopy of globes from young adult pigs. Am. J. Vet. Res. 58:942–948, 1997.PubMedGoogle Scholar
  4. 4.
    Boschetti, F., V. Triacca, L. Spinelli, and A. Pandolfi. Mechanical characterization of porcine corneas. J. Biomech. Eng. 134:031003–031009, 2012.PubMedCrossRefGoogle Scholar
  5. 5.
    Boyce, B. L., J. M. Grazier, R. E. Jones, and T. D. Nguyen. Full-field deformation of bovine cornea under constrained inflation conditions. Biomaterials 29:3896–3904, 2008.PubMedCrossRefGoogle Scholar
  6. 6.
    Boyce, B. L., R. E. Jones, T. D. Nguyen, and J. M. Grazier. Stress-controlled viscoelastic tensile response of bovine cornea. J. Biomech. 40:2367–2376, 2007.PubMedCrossRefGoogle Scholar
  7. 7.
    Bryant, M. R., and P. J. McDonnell. Constitutive laws for biomechanical modeling of refractive surgery. J. Biomech. Eng. 118:473–481, 1996.PubMedCrossRefGoogle Scholar
  8. 8.
    Cheng, S., and L. E. Bilston. Unconfined compression of white matter. J. Biomech. 40:117–124, 2007.PubMedCrossRefGoogle Scholar
  9. 9.
    Cheng, X., H. Hatami-Marbini, and P. M. Pinsky. Modeling collagen-proteoglycan structural interactions in the human cornea. In: Computer Models in Biomechanics, edited by G. A. Holzapfel and E. Kuhl. Springer, 2013, pp. 11–24.Google Scholar
  10. 10.
    Chow, M. J., and Y. Zhang. Changes in the mechanical and biochemical properties of aortic tissue due to cold storage. J. Surg. Res. 171:434–442, 2011.PubMedCrossRefGoogle Scholar
  11. 11.
    Cohen, B., W. M. Lai, and V. C. Mow. A transversely isotropic biphasic model for unconfined compression of growth plate and chondroepiphysis. J. Biomech. Eng. 120:491–496, 1998.PubMedCrossRefGoogle Scholar
  12. 12.
    DiSilvestro, M. R., Q. Zhu, and J.-K. F. Suh. Biphasic poroviscoelastic simulation of the unconfined compression of articular cartilage: II-effect of variable strain rates. J. Biomech. Eng. 123:198–200, 2001.PubMedCrossRefGoogle Scholar
  13. 13.
    Doughty, M. J. Swelling of the collagen-keratocyte matrix of the bovine corneal stroma ex vivo in various solutions and its relationship to tissue thickness. Tissue Cell 32:478–493, 2000.PubMedCrossRefGoogle Scholar
  14. 14.
    Elsheikh, A., and D. Alhasso. Mechanical anisotropy of porcine cornea and correlation with stromal microstructure. Exp. Eye Res. 88:1084–1091, 2009.PubMedCrossRefGoogle Scholar
  15. 15.
    Elsheikh, A., D. Alhasso, and P. Rama. Biomechanical properties of human and porcine corneas. Exp. Eye Res. 86:783–790, 2008.PubMedCrossRefGoogle Scholar
  16. 16.
    Elsheikh, A., and K. Anderson. Comparative study of corneal strip extensometry and inflation tests. J. R. Soc. Interface 2:177–185, 2005.PubMedCrossRefGoogle Scholar
  17. 17.
    Elsheikh, A., W. Kassem, and S. W. Jones. Strain-rate sensitivity of porcine and ovine corneas. Acta Bioeng. Biomech. 13:25–36, 2011.PubMedGoogle Scholar
  18. 18.
    Faber, C., E. Scherfig, J. U. Prause, and K. E. Sorensen. Corneal thickness in pigs measured by ultrasound pachymetry in vivo. Scand. J. Lab. Anim. Sci. 35:39–43, 2008.Google Scholar
  19. 19.
    Fatt, I., and T. K. Goldstick. Dynamics of water transport in swelling membranes. J. Colloid Sci. 20:962–989, 1965.PubMedCrossRefGoogle Scholar
  20. 20.
    Fatt, I., and B. O. Hedbys. Flow conductivity of human corneal stroma. Exp. Eye Res. 10:237–242, 1970.PubMedCrossRefGoogle Scholar
  21. 21.
    Foster, A., and S. Resnikoff. The impact of Vision 2020 on global blindness. Eye (London, England) 19:1133–1135, 2005.Google Scholar
  22. 22.
    Fullwood, N. J., and K. M. Meek. Ultrastructural, time-resolved study of freezing in the corneal stroma. J. Mol. Biol. 236:749–758, 1994.PubMedCrossRefGoogle Scholar
  23. 23.
    Hatami-Marbini, H. Mechano-electrochemical mixture theories for the multiphase fluid infiltrated poroelastic media. In: Handbook on Micromechanics and Nanomechanics, edited by S. Li and X.-L. Gao Pan. Stanford Publishing Pte. Ltd., 2013, pp. 273–302.Google Scholar
  24. 24.
    Hatami-Marbini, H., and E. Etebu. An experimental and theoretical analysis of unconfined compression of corneal stroma. J. Biomech. 46:1752–1758, 2013.PubMedCrossRefGoogle Scholar
  25. 25.
    Hatami-Marbini, H., and P. M. Pinsky. On mechanics of connective tissue: assessing the electrostatic contribution to corneal stroma elasticity. Material Research Society Proceedings. Boston, 2009, pp. 1239.Google Scholar
  26. 26.
    Hayes, S., C. Boote, J. Lewis, et al. Comparative study of fibrillar collagen arrangement in the corneas of primates and other mammals. Anat. Rec. 290:1542–1550, 2007.CrossRefGoogle Scholar
  27. 27.
    Hedbys, B. O., and C. H. Dohlman. A new method for the determination of the swelling pressure of the corneal stroma in vitro. Exp. Eye Res. 2:122–129, 1963.PubMedCrossRefGoogle Scholar
  28. 28.
    Hedbys, B. O., and S. Mishima. Flow of water in the corneal stroma. Exp. Eye Res. 1:262–275, 1962.PubMedCrossRefGoogle Scholar
  29. 29.
    Hjortdal, J. O. Extensibility of the normo-hydrated human cornea. Acta Ophthalmol. Scand. 73:12–17, 1995.PubMedCrossRefGoogle Scholar
  30. 30.
    Hoeltzel, D. A., P. Altman, K. Buzard, and K.-I. Choe. Strip extensiometry for comparison of the mechanical response of bovine, rabbit, and human corneas. J. Biomech. Eng. 114:202–215, 1992.PubMedCrossRefGoogle Scholar
  31. 31.
    Howland, H. C., R. H. Rand, and S. R. Lubkin. A thin-shell model of the cornea and its application to corneal surgery. Refract. Corneal Surg. 8:183–186, 1992.PubMedGoogle Scholar
  32. 32.
    Huang, C.-Y., V. C. Mow, and G. A. Ateshian. The role of flow-independent viscoelasticity in the biphasic tensile and compressive responses of articular cartilage. J. Biomech. Eng. 123:410–417, 2001.PubMedCrossRefGoogle Scholar
  33. 33.
    Huang, C.-Y., M. A. Soltz, M. Kopacz, V. C. Mow, and G. A. Ateshian. Experimental verification of the roles of intrinsic matrix viscoelasticity and tension-compression nonlinearity in the biphasic response of cartilage. J. Biomech. Eng. 125:84–93, 2003.PubMedCrossRefGoogle Scholar
  34. 34.
    Huang, Y.-F., K. M. Meek, L.-Q. Wang, and D.-J. Wang. Effects of prior freezing or drying on the swelling behaviour of the bovine cornea. Chin. Med. J. 122:212–218, 2009.PubMedGoogle Scholar
  35. 35.
    Huyghe, J. M., and J. D. Janssen. Quadriphasic mechanics of swelling incompressible porous media. Int. J. Eng. Sc. 35:793–802, 1997.CrossRefGoogle Scholar
  36. 36.
    Jue, B., and D. M. Maurice. The mechanical properties of the rabbit and human cornea. J. Biomech. 19:847–853, 1986.PubMedCrossRefGoogle Scholar
  37. 37.
    June, R. K., and D. P. Fyhrie. A comparison of cartilage stress-relaxation models in unconfined compression: QLV and stretched exponential in combination with fluid flow. Comput. Methods Biomech. Biomed. Eng. 16:565–576, 2013.CrossRefGoogle Scholar
  38. 38.
    Kampmeier, J., B. Radt, R. Birngruber, and R. Brinkmann. Thermal and biomechanical parameters of porcine cornea. Cornea 19:355–363, 2000.PubMedCrossRefGoogle Scholar
  39. 39.
    Kim, J. H., K. Green, M. Martinez, and D. Paton. Solute permeability of the corneal endothelium and Descemet’s membrane. Exp. Eye Res. 12:231–238, 1971.PubMedCrossRefGoogle Scholar
  40. 40.
    Korhonen, R. K., M. S. Laasanen, J. Toyras, et al. Comparison of the equilibrium response of articular cartilage in unconfined compression, confined compression and indentation. J. Biomech. 35:903–909, 2002.PubMedCrossRefGoogle Scholar
  41. 41.
    Li, L. P., and W. Herzog. Strain-rate dependence of cartilage stiffness in unconfined compression: the role of fibril reinforcement versus tissue volume change in fluid pressurization. J. Biomech. 37:375–382, 2004.PubMedCrossRefGoogle Scholar
  42. 42.
    Maurice, D. M. The cornea and sclera. In: The Eye, edited by H. Davason. London Academic Press, 1984, pp. 1–184.Google Scholar
  43. 43.
    Mow, V. C., S. C. Kuei, W. M. Lai, and C. G. Armstrong. Biphasic creep and stress relaxation of articular cartilage in compression: theory and experiments. J. Biomech. Eng. 102:73–84, 1980.PubMedCrossRefGoogle Scholar
  44. 44.
    Olsen, T., and S. Sperling. The swelling pressure of the human corneal stroma as determined by a new method. Exp. Eye Res. 44:481–490, 1987.PubMedCrossRefGoogle Scholar
  45. 45.
    Pandolfi, A. Computational biomechanics of the human cornea. In: Computational Modeling in Biomechanics, edited by S. De, F. GuilaK and M. Mofrad. Springer, 2010, pp. 435–466.Google Scholar
  46. 46.
    Pandolfi, A., and G. A. Holzapfel. Three-dimensional modeling and computational analysis of the human cornea considering distributed collagen fibril orientations. J. Biomech. Eng. 130:061006-061001–061006-061012, 2008.Google Scholar
  47. 47.
    Pandolfi, A., and F. Manganiello. A model for the human cornea: constitutive formulation and numerical analysis. Biomech. Model. Mechanobiol. 5:237–246, 2006.PubMedCrossRefGoogle Scholar
  48. 48.
    Pizzarello, L., A. Abiose, T. Ffytche, et al. VISION 2020: The Right to Sight: a global initiative to eliminate avoidable blindness. Arch. Ophthalmol. 122:615–620, 2004.PubMedCrossRefGoogle Scholar
  49. 49.
    Soltz, M. A., and G. A. Ateshian. A conewise linear elasticity mixture model for the analysis of tension-compression nonlinearity in articular cartilage. J. Biomech. Eng. 122:576–586, 2000.PubMedCrossRefGoogle Scholar
  50. 50.
    Soulhat, J., M. D. Buschmann, and A. Shirazi-Adl. A fibril-network-reinforced biphasic model of cartilage in unconfined compression. J. Biomech. Eng. 121:340–347, 1999.PubMedCrossRefGoogle Scholar
  51. 51.
    Stewart, J. M., D. S. Schultz, O.-T. Lee, and M. L. Trinidad. Collagen cross-links reduce corneal permeability. Invest. Ophthalmol. Vis. Sci. 50:1606–1612, 2009.PubMedCrossRefGoogle Scholar
  52. 52.
    Vitale, S., M. F. Cotch, R. Sperduto, and L. Ellwein. Costs of refractive correction of distance vision impairment in the United States, 1999–2002. Ophthalmology 113:2163–2170, 2006.PubMedCrossRefGoogle Scholar
  53. 53.
    Wilson, W., C. C. van Donkelaar, B. van Rietbergen, and R. Huiskes. A fibril-reinforced poroviscoelastic swelling model for articular cartilage. J. Biomech. 38:1195–1204, 2005.PubMedCrossRefGoogle Scholar

Copyright information

© Biomedical Engineering Society 2013

Authors and Affiliations

  1. 1.School of Mechanical and Aerospace EngineeringOklahoma State UniversityStillwaterUSA

Personalised recommendations