Skip to main content
Log in

MRI-Apparent Localized Deformation of the Median Nerve Within the Carpal Tunnel During Functional Hand Loading

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

In MR images, the median nerve of carpal tunnel syndrome (CTS) patients frequently appears flatter than in healthy subjects. The purpose of this work was to develop a metric to quantify localized median nerve deformation rather than global nerve flattening, the hypothesis being that localized median nerve deformation would be elevated in CTS patients. Twelve patients with CTS and 12 matched normals underwent MRI scanning in eight isometrically loaded hand conditions. 2D cross sections of the proximal and distal tunnel were analyzed for nerve cross sectional area, flattening ratio, and a position shift to the dorsal side of the tunnel. Additionally, new metrics based on the angulation of the nerve perimeter in 0.5-mm lengths around the boundary were calculated. The localized deformation metrics were able to detect differences between CTS patients and healthy subjects that could not be appreciated from the flattening ratio. During most hand activities, normal subjects had a higher average percentage of locally deformed nerve boundary than did CTS patients, despite having a rounder overall shape. Less local nerve deformation in the CTS patient group resulting from its interaction with flexor tendons suggests that the nerve may be less compliant in CTS patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Andreisek, G., D. W. Crook, D. Burg, B. Marincek, and D. Weishaupt. Peripheral neuropathies of the median, radial, and ulnar nerves: MR imaging features. Radiographics 26(5):1267–1287, 2006.

    Article  PubMed  Google Scholar 

  2. Bribiesca, E. Arithmetic operations among shapes using shape numbers. Pattern Recognit. 12(2):123, 1981.

    Article  Google Scholar 

  3. Chan, T. F., and L. A. Vese. Active contours without edges. IEEE Trans. Image Process. 10(2):266–277, 2001.

    Article  PubMed  CAS  Google Scholar 

  4. Chen, R. J., C. C. Lin, and M. S. Ju. In situ transverse elasticity and blood perfusion change of sciatic nerves in normal and diabetic rats. Clin. Biomech. (Bristol, Avon) 25(5):409–414, 2010.

    Article  PubMed  CAS  Google Scholar 

  5. Girgis, W. S., and R. E. Epstein. Magnetic resonance imaging of the hand and wrist. Semin. Roentgenol. 35(3):286–296, 2000.

    Article  PubMed  CAS  Google Scholar 

  6. Jablecki, C. K., M. T. Andary, Y. T. So, D. E. Wilkins, and F. H. Williams. Literature review of the usefulness of nerve conduction studies and electromyography for the evaluation of patients with carpal tunnel syndrome. AAEM Quality Assurance Committee. Muscle Nerve 16(12):1392–1414, 1993.

    Article  PubMed  CAS  Google Scholar 

  7. Keith, M. W., V. Masear, K. Chung, K. Maupin, M. Andary, P. C. Amadio, R. W. Barth, W. C. Watters, III, M. J. Goldberg, R. H. Haralson, III, C. M. Turkelson, and J. L. Wies. Diagnosis of carpal tunnel syndrome. J. Am. Acad. Orthop. Surg. 17(6):389–396, 2009.

    PubMed  Google Scholar 

  8. Kunze, N. M. Investigation of local deformation of the median nerve in magnetic resonance images of the carpal tunnel. Master’s Thesis. Iowa City, IA: Department of Biomedical Engineering, University of Iowa, 2010.

    Google Scholar 

  9. Kunze, N. M., J. E. Goetz, D. R. Thedens, T. E. Baer, E. A. Lawler, and T. D. Brown. Individual flexor tendon identification within the carpal tunnel: a semi-automated analysis method for serial cross-section magnetic resonance images. Orthop. Res. Rev. 1:1, 2009.

    Google Scholar 

  10. Mesgarzadeh, M., C. D. Schneck, and A. Bonakdarpour. Carpal tunnel: MR imaging. Part I. Normal anatomy. Radiology 171(3):743–748, 1989.

    PubMed  CAS  Google Scholar 

  11. Mesgarzadeh, M., C. D. Schneck, A. Bonakdarpour, A. Mitra, and D. Conaway. Carpal tunnel: MR imaging. Part II. Carpal tunnel syndrome. Radiology 171(3):749–754, 1989.

    PubMed  CAS  Google Scholar 

  12. Middleton, W. D., J. B. Kneeland, G. M. Kellman, J. D. Cates, J. R. Sanger, A. Jesmanowicz, W. Froncisz, and J. S. Hyde. MR imaging of the carpal tunnel: normal anatomy and preliminary findings in the carpal tunnel syndrome. AJR Am. J. Roentgenol. 148(2):307–316, 1987.

    Article  PubMed  CAS  Google Scholar 

  13. Mogk, J. P., and P. J. Keir. Wrist and carpal tunnel size and shape measurements: effects of posture. Clin. Biomech. (Bristol, Avon) 23(9):1112–1120, 2008.

    Article  Google Scholar 

  14. Monagle, K., G. Dai, A. Chu, R. S. Burnham, and R. E. Snyder. Quantitative MR imaging of carpal tunnel syndrome. AJR Am. J. Roentgenol. 172(6):1581–1586, 1999.

    Article  PubMed  CAS  Google Scholar 

  15. Padua, L., M. LoMonaco, B. Gregori, E. M. Valente, R. Padua, and P. Tonali. Neurophysiological classification and sensitivity in 500 carpal tunnel syndrome hands. Acta Neurol. Scand. 96(4):211–217, 1997.

    Article  PubMed  CAS  Google Scholar 

  16. Powell, H. C., and R. R. Myers. Pathology of experimental nerve compression. Lab. Invest. 55(1):91–100, 1986.

    PubMed  CAS  Google Scholar 

  17. Radack, D. M., M. E. Schweitzer, and J. Taras. Carpal tunnel syndrome: are the MR findings a result of population selection bias? AJR Am. J. Roentgenol. 169(6):1649–1653, 1997.

    Article  PubMed  CAS  Google Scholar 

  18. Roberts, M. D., I. A. Sigal, Y. Liang, C. F. Burgoyne, and J. C. Downs. Changes in the biomechanical response of the optic nerve head in early experimental glaucoma. Invest. Ophthalmol. Vis. Sci. 51(11):5675–5684, 2010.

    Article  PubMed  Google Scholar 

  19. Rosso, G., C. Negreira, J. R. Sotelo, and A. Kun. Myelinating and demyelinating phenotype of Trembler-J mouse (a model of Charcot–Marie–Tooth human disease) analyzed by atomic force microscopy and confocal microscopy. J. Mol. Recognit. 25(5):247–255, 2012.

    Article  PubMed  CAS  Google Scholar 

  20. Rydevik, B., and C. Nordborg. Changes in nerve function and nerve fibre structure induced by acute, graded compression. J. Neurol. Neurosurg. Psychiatry 43(12):1070–1082, 1980.

    Article  PubMed  CAS  Google Scholar 

  21. Steinbach, L. S., and D. K. Smith. MRI of the wrist. Clin. Imaging 24(5):298–322, 2000.

    Article  PubMed  CAS  Google Scholar 

  22. van Doesburg, M. H. M., J. Henderson, Y. Yoshii, A. B. M. van der Molen, S. S. Cha, K. N. An, and P. C. Amadio. Median nerve deformation in differential finger motions: ultrasonographic comparison of carpal tunnel syndrome patients and healthy controls. J. Orthop. Res. 30(4):643–648, 2012.

    Article  PubMed  Google Scholar 

  23. Weiss, K. L., J. Beltran, and L. M. Lubbers. High-field MR surface-coil imaging of the hand and wrist. Part II. Pathologic correlations and clinical relevance. Radiology 160(1):147–152, 1986.

    PubMed  CAS  Google Scholar 

  24. Weiss, K. L., J. Beltran, O. M. Shamam, R. F. Stilla, and M. Levey. High-field MR surface-coil imaging of the hand and wrist. Part I. Normal anatomy. Radiology 160(1):143–146, 1986.

    PubMed  CAS  Google Scholar 

  25. Yao, L., and N. Gai. Median nerve cross-sectional area and MRI diffusion characteristics: normative values at the carpal tunnel. Skelet. Radiol. 38:355–361, 2009.

    Article  Google Scholar 

Download references

Acknowledgment

We would like to acknowledge Dr. M. Bridget Zimmerman for her help regarding statistics.

Conflict of interest

This work was funded by National Institutes of Health Grant AR053899. No benefits in any form have been or will be received from a commercial party related directly or indirectly to the subject of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jessica E. Goetz.

Additional information

Associate Editor Eiji Tanaka oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Goetz, J.E., Kunze, N.M., Main, E.K. et al. MRI-Apparent Localized Deformation of the Median Nerve Within the Carpal Tunnel During Functional Hand Loading. Ann Biomed Eng 41, 2099–2108 (2013). https://doi.org/10.1007/s10439-013-0809-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-013-0809-3

Keywords

Navigation