Skip to main content
Log in

Creep Deformation of the Human Trunk in Response to Prolonged and Repetitive Flexion: Measuring and Modeling the Effect of External Moment and Flexion Rate

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

While viscoelastic responses of isolated trunk soft tissues have been characterized in earlier studies, the effects of external loading and flexion rate on these responses in the intact human trunk are largely unknown. Two experiments were conducted to measure trunk viscoelastic behaviors, one involving prolonged flexion with several extra loads (attached to the wrists) and the other repetitive trunk flexion with different extra loads and flexion rates. Direct outcome measures included initial trunk angle, creep angle, and residual/cumulative creep. Viscoelastic behaviors in both experiments were characterized using different Kelvin-solid models. For prolonged flexion, extra load significantly affected initial angle, creep angle, and viscoelastic model parameters, while residual creep remained unchanged. For repetitive flexion, cumulative creep angle significantly increased with both extra load and flexion rate. Nonlinear viscoelastic behavior of the trunk was evident in both experiments, which also indicated better predictive performance using Kelvin-solid models with ≥2 retardation time constants. Understanding trunk viscoelastic behaviors in response to flexion exposures can help in future modeling and in assessing how such exposures alter the synergy between active and passive trunk tissues.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

Similar content being viewed by others

References

  1. Adams, M., and P. Dolan. Recent advances and their clinical in lumbar spinal mechanics significance. Clin. Biomech. 10(1):3–19, 1995.

    Article  Google Scholar 

  2. Arjmand, N., and A. Shirazi-Adl. Biomechanics of changes in lumbar posture in static lifting. Spine 30(23):2637–2648, 2005.

    Article  PubMed  Google Scholar 

  3. Bakker, E. W. P., A. P. Verhagen, E. Van Trijffel, C. Lucas, and B. W. Koes. Spinal mechanical load as a risk factor for low back pain: a systematic review of prospective cohort studies. Spine 34(8):E281–E293, 2009.

    Article  PubMed  Google Scholar 

  4. Bazrgari, B., B. Hendershot, K. Muslim, N. Toosizadeh, M. A. Nussbaum, and M. L. Madigan. Disturbance and recovery of trunk mechanical and neuromuscular behaviours following prolonged trunk flexion: influences of duration and external load on creep-induced effects. Ergonomics 54(11):1043–1052, 2011.

    Article  PubMed  Google Scholar 

  5. Bazrgari, B., A. Shirazi-Adl, and M. Kasra. Computation of trunk muscle forces, spinal loads and stability in whole-body vibration. J. Sound Vib. 318(4–5):1334–1347, 2008.

    Article  Google Scholar 

  6. Brereton, L. C., and S. M. McGill. Effects of physical fatigue and cognitive challenges on the potential for low back injury. Hum. Mov. Sci. 18(6):839–857, 1999.

    Article  Google Scholar 

  7. Brown, M. D., D. C. Holmes, A. D. Heiner, and K. F. Wehman. Intraoperative measurement of lumbar spine motion segment stiffness. Spine 27(9):954–958, 2002.

    Article  PubMed  Google Scholar 

  8. Burdorf, A., and G. Sorock. Positive and negative evidence of risk factors for back disorders. Scand. J. Work Environ. Health 23(4):243–256, 1997.

    Article  PubMed  CAS  Google Scholar 

  9. Burns, M., I. Kaleps, and L. Kazarian. Analysis of compressive creep behavior of the vertebral unit subjected to a uniform axial loading using exact parametric solution equations of Kelvin-solid models—Part I. Human intervertebral joints. J. Biomech. 17(2):113–115, 117–130, 1984.

    Google Scholar 

  10. De Leva, P. Adjustments to Zatsiorsky-Seluyanov’s segment inertia parameters. J. Biomech. 29(9):1223–1230, 1996.

    Article  PubMed  Google Scholar 

  11. Dolan, P., and M. Adams. Repetitive lifting tasks fatigue the back muscles and increase the bending moment acting on the lumbar spine. J. Biomech. 31(8):713–721, 1998.

    Article  PubMed  CAS  Google Scholar 

  12. Findley, W. N., J. S. Lai, and K. Onaran. Creep and Relaxation of Nonlinear Viscoelastic Materials: With an Introduction to Linear Viscoelasticity. Dover Publications, 1989.

  13. Graham, R. B.and S. H. M. Brown. A direct comparison of spine rotational stiffness and dynamic spine stability during repetitive lifting tasks. J. Biomech. 2012.

  14. Groth, K. M., and K. P. Granata. The viscoelastic standard nonlinear solid model: predicting the response of the lumbar intervertebral disk to low-frequency vibrations. J. Biomech. Eng. 130(031005), 2008.

  15. Guan, Y., N. Yoganandan, J. Moore, F. A. Pintar, J. Zhang, D. J. Maiman, and P. Laud. Moment-rotation responses of the human lumbosacral spinal column. J. Biomech. 40(9):1975–1980, 2007.

    Article  PubMed  Google Scholar 

  16. Hawkins, D., C. Lum, D. Gaydos, and R. Dunning. Dynamic creep and pre-conditioning of the Achilles tendon in-vivo. J. Biomech. 42(16):2813–2817, 2009.

    Article  PubMed  Google Scholar 

  17. Hendershot, B., B. Bazrgari, K. Muslim, N. Toosizadeh, M. A. Nussbaum, and M. L. Madigan. Disturbance and recovery of trunk stiffness and reflexive muscle responses following prolonged trunk flexion: Influences of flexion angle and duration. Clin. Biomech. 26(3):250–256, 2011.

    Article  Google Scholar 

  18. Hoogendoorn, W. E., P. M. Bongers, H. C. W. de Vet, M. Douwes, B. W. Koes, M. C. Miedema, G. A. M. Ariëns, and L. M. Bouter. Flexion and rotation of the trunk and lifting at work are risk factors for low back pain: results of a prospective cohort study. Spine 25(23):3087–3092, 2000.

    Article  PubMed  CAS  Google Scholar 

  19. Hult, E., L. Ekström, A. Kaigle, S. Holm, and T. Hansson. In vivo measurement of spinal column viscoelasticity—an animal model. Proc. Inst. Mech. Eng. H 209(2):105–110, 1995.

    PubMed  CAS  Google Scholar 

  20. Keller, T. S., S. H. Holm, T. H. Hansson, and D. Spengler. The dependence of intervertebral disc mechanical properties on physiologic conditions. Spine 15(8):751–761, 1990.

    PubMed  CAS  Google Scholar 

  21. Little, J. S., and P. S. Khalsa. Human lumbar spine creep during cyclic and static flexion: creep rate, biomechanics, and facet joint capsule strain. Ann. Biomed. Eng. 33(3):391–401, 2005.

    Article  PubMed  Google Scholar 

  22. Lu, D., P. Le, B. Davidson, B. H. Zhou, Y. Lu, V. Patel, and M. Solomonow. Frequency of cyclic lumbar loading is a risk factor for cumulative trauma disorder. Muscle Nerve 38(1):867–874, 2008.

    Article  PubMed  Google Scholar 

  23. Machiraju, C., A. V. Phan, A. Pearsall, and S. Madanagopal. Viscoelastic studies of human subscapularis tendon: relaxation test and a Wiechert model. Comput. Methods Programs Biomed. 83(1):29–33, 2006.

    Article  PubMed  CAS  Google Scholar 

  24. Magnusson, S. P., P. Aagaard, and J. J. Nielson. Passive energy return after repeated stretches of the hamstring muscle-tendon unit. Med. Sci. Sports Exerc. 32(6):1160–1164, 2000.

    Article  PubMed  CAS  Google Scholar 

  25. Marras, W. S., S. A. Lavender, S. Leurgans, S. Rajulu, W. G. Allread, F. A. Fathallah, and S. A. Ferguson. The role of dynamic three-dimensional trunk motion in occupationally-related low back disorders. Spine 18(5):617–628, 1993.

    Article  PubMed  CAS  Google Scholar 

  26. McGill, S., and S. Brown. Creep response of the lumbar spine to prolonged full flexion. Clin. Biomech. 7(1):43–46, 1992.

    Article  Google Scholar 

  27. McGill, S., J. Seguin, and G. Bennett. Passive stiffness of the lumbar torso in flexion, extension, lateral bending, and axial rotation. Effect of belt wearing and breath holding. Spine 19(6):696–704, 1994.

    Article  PubMed  CAS  Google Scholar 

  28. Mital, A. Comprehensive maximum acceptable weight of lift database for regular 8-hour work shifts. Ergonomics 27(11):1127–1138, 1984.

    Article  PubMed  CAS  Google Scholar 

  29. Norman, R., R. Wells, P. Neumann, J. Frank, H. Shannon, and M. Kerr. A comparison of peak versus− cumulative physical work exposure risk factors for the reporting of low back pain in the automotive industry. Clin. Biomech. 13(8):561–573, 1998.

    Article  Google Scholar 

  30. Nussbaum, M., and D. Chaffin. Development and evaluation of a scalable and deformable geometric model of the human torso. Clin. Biomech. 11(1):25–34, 1996.

    Article  Google Scholar 

  31. Olson, M. W., Li L, and M. Solomonow. Interaction of viscoelastic tissue compliance with lumbar muscles during passive cyclic flexion–extension. J. Electromyogr. Kinesiol. 19(1):30–38, 2009.

    Article  PubMed  Google Scholar 

  32. Olson, M. W., L. Li, and M. Solomonow. Flexion-relaxation response to cyclic lumbar flexion. Clin. Biomech. 19(8):769–776, 2004.

    Article  Google Scholar 

  33. Panjabi, M. M. The stabilizing system of the spine. Part I. Function, dysfunction, adaptation, and enhancement. J. Spinal Disord. 5:383–383, 1992.

    Article  PubMed  CAS  Google Scholar 

  34. Panjabi, M., T. Oxland, I. Yamamoto, and J. Crisco. Mechanical behavior of the human lumbar and lumbosacral spine as shown by three-dimensional load-displacement curves. J. Bone Joint Surg. Am. 76(3):413–424, 1994.

    PubMed  CAS  Google Scholar 

  35. Parkinson, R. J., T. A. C. Beach, and J. P. Callaghan. The time-varying response of the in vivo lumbar spine to dynamic repetitive flexion. Clin. Biomech. 19(4):330–336, 2004.

    Article  Google Scholar 

  36. Prado-Leon, L. R., A. Celis, and R. Avila-Chaurand. Occupational lifting tasks as a risk factor in low back pain: a case-control study in a Mexican population. Work 25(2):107–114, 2005.

    PubMed  Google Scholar 

  37. Punnett, L., L. J. Fine, W. M. Keyserling, G. D. Herrin, and D. B. Chaffin. Back disorders and nonneutral trunk postures of automobile assembly workers. Scand. J. Work. Environ. Health 17(5):337–346, 1991.

    Article  PubMed  CAS  Google Scholar 

  38. Reeves, N. P., K. S. Narendra, and J. Cholewicki. Spine stability: the six blind men and the elephant. Clin. Biomech. 22(3):266–274, 2007.

    Article  Google Scholar 

  39. Roy, S. H., C. J. De Luca, and D. A. Casavant. Lumbar muscle fatigue and chronic lower back pain. Spine 14(9):992, 1989.

    Article  PubMed  CAS  Google Scholar 

  40. Ryan, E., T. Herda, P. Costa, A. Walter, and J. Cramer. Dynamics of viscoelastic creep during repeated stretches. Scand. J. Med. Sci. Sports 22(2):179–184, 2011.

    Article  PubMed  Google Scholar 

  41. Shin, G., and C. D’Souza. EMG activity of low back extensor muscles during cyclic flexion/extension. J. Electromyogr. Kinesiol. 20(4):742–749, 2010.

    Article  PubMed  Google Scholar 

  42. Shin, G., C. D’Souza, and Y. H. Liu. Creep and fatigue development in the low back in static flexion. Spine 34(17):1873–1878, 2009.

    Article  PubMed  Google Scholar 

  43. Shin, G., and G. A. Mirka. An in vivo assessment of the low back response to prolonged flexion: interplay between active and passive tissues. Clin. Biomech. 22(9):965–971, 2007.

    Article  Google Scholar 

  44. Snook, S. H., and V. M. Ciriello. The design of manual handling tasks: revised tables of maximum acceptable weights and forces. Ergonomics 34(9):1197–1213, 1991.

    Article  PubMed  CAS  Google Scholar 

  45. Solomonow, M. Neuromuscular manifestations of viscoelastic tissue degradation following high and low risk repetitive lumbar flexion. J. Electromyogr. Kinesiol. 22(2):155–175, 2011.

    Article  PubMed  Google Scholar 

  46. Solomonow, M., R. Baratta, B. H. Zhou, E. Burger, A. Zieske, and A. Gedalia. Muscular dysfunction elicited by creep of lumbar viscoelastic tissue. J. Electromyogr. Kinesiol. 13(4):381–396, 2003.

    Article  PubMed  CAS  Google Scholar 

  47. Toosizadeh, N., M. A. Nussbaum, B. Bazrgari, and M. L. Madigan. Load-relaxation properties of the human trunk in response to prolonged flexion: measuring and modeling the effect of flexion angle. PLoS ONE 7(11):e48625, 2012.

    Article  PubMed  CAS  Google Scholar 

  48. Troyer, K. L., and C. M. Puttlitz. Human cervical spine ligaments exhibit fully nonlinear viscoelastic behavior. Acta Biomater. 7(2):700–709, 2011.

    Article  PubMed  CAS  Google Scholar 

  49. Twomey, L., and J. Taylor. Flexion creep deformation and hysteresis in the lumbar vertebral column. Spine 7(2):116–122, 1982.

    Article  PubMed  CAS  Google Scholar 

  50. Yassierli, Y., M. A. Nussbaum, H. Iridiastadi, and L. A. Wojcik. The influence of age on isometric endurance and fatigue is muscle dependent: a study of shoulder abduction and torso extension. Ergonomics 50(1):26–45, 2007.

    Article  PubMed  CAS  Google Scholar 

  51. Youssef, J., B. Davidson, B. H. Zhou, Y. Lu, V. Patel, and M. Solomonow. Neuromuscular neutral zones response to static lumbar flexion: muscular stability compensator. Clin. Biomech. 23(7):870–880, 2008.

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by an award (R01 OH008504) from the Centers for Disease Control and Prevention (CDC). The contents are solely the responsibility of the authors and do not necessarily represent the official views of the CDC. The authors thank Mr. Waldron and Mr. Vest for their assembly and maintenance of the testing apparatus.

Conflict of interest statement

The authors have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maury A. Nussbaum.

Additional information

Associate Editor Michael R. Torry oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Toosizadeh, N., Nussbaum, M.A. Creep Deformation of the Human Trunk in Response to Prolonged and Repetitive Flexion: Measuring and Modeling the Effect of External Moment and Flexion Rate. Ann Biomed Eng 41, 1150–1161 (2013). https://doi.org/10.1007/s10439-013-0797-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-013-0797-3

Keywords

Navigation