Annals of Biomedical Engineering

, Volume 41, Issue 6, pp 1269–1278 | Cite as

Early Left Ventricular Diastolic Function Quantitation Using Directional Impedances



Impedance has been used in vascular biology to characterize the frequency dependent opposition the circulatory system presents to blood flow in response to a pulsatile pressure gradient. It has also been used to characterize diastolic function (DF) via the early, diastolic left ventricular (LV) pressure–flow relation. In a normal LV, early filling volume is accommodated primarily by wall-thinning and ascent of the mitral annulus relative to the spatially fixed apex (longitudinal chamber expansion). Simultaneously, the endocardial (transverse or short axis) dimension also increases while epicardial (transverse) external dimension remains essentially constant. To quantify these directional filling attributes, we compute longitudinal (Z L) and transverse (Z T) impedances during early rapid-filling (Doppler E-wave). Z L and Z T were calculated from 578 cardiac cycles of simultaneous transmitral flow and high fidelity LV pressure data in 17 subjects with normal LV function. Average Z L was 0.7 ± 0.4 mmHg s/cm4 and average Z T was 238 ± 316 mmHg s/cm2. Direct comparison, in the same units is achieved by computing Z T over the ≈10 cm2 cross-sectional area of LV (denoted ŽT) revealing that Z L is ≈34 times smaller than ŽT. This quantifies the physiologic preference for longitudinal LV volume accommodation. Lowest Z L and Z T values occurred in the first harmonic with monotonically increasing values with higher harmonics. We conclude that Z L and Z T characterize longitudinal and transverse chamber properties of DF and therefore, diastolic dysfunction can be viewed as a state of impedance mismatch.


Echocardiography Diastolic function Longitudinal impedance Transverse impedance Characteristic impedance Input impedance 



The assistance of the staff of the Cardiovascular Procedure Center at Barnes-Jewish Hospital at Washington University Medical Center and Peggy Brown for expert echocardiographic data acquisition is gratefully acknowledged. This work was supported in part by the Alan A. and Edith L. Wolff Charitable Trust (St. Louis, MO) and the Barnes-Jewish Hospital Foundation. E. Ghosh is a recipient of a Heartland Affiliate Predoctoral Fellowship Award from the American Heart Association.


  1. 1.
    Appleton, C. P., M. S. Firstenberg, M. J. Garcia, and J. D. Thomas. The echo-Doppler evaluation of left ventricular diastolic function. Cardiol. Clin. 18:513–546, 2000.PubMedCrossRefGoogle Scholar
  2. 2.
    Avolio, A. P., M. F. O’Rourke, K. Mang, P. T. Bason, and B. S. Gow. A comparative study of pulsatile arterial hemodynamics in rabbits and guinea pigs. Am. J. Physiol. 230:868–875, 1976.PubMedGoogle Scholar
  3. 3.
    Baumgartner, H., J. Hung, J. Bermejo, J. B. Chambers, A. Evangelista, B. P. Griffin, B. Iung, C. M. Otto, P. A. Pellikka, and M. Quiñones. Echocardiographic assessment of valve stenosis: EAE/ASE Recommendations for clinical practice. J. Am. Soc. Echocardiogr. 22(1):1–23, 2009.PubMedCrossRefGoogle Scholar
  4. 4.
    Bowman, A. W., and S. J. Kovács. Assessment and consequences of the constant-volume attribute of the four-chambered heart. Am. J. Physiol. Heart Circ. Physiol. 285:H2027–H2033, 2003.PubMedGoogle Scholar
  5. 5.
    Buckberg, G., A. Mahajan, S. Saleh, J. I. Hoffman, and C. Coghlan. Structure and function relationships of the helical ventricular myocardial band. J. Thorac. Cardiovasc. Surg. 136:578–589, 89.e1–89.e11, 2008.Google Scholar
  6. 6.
    Bursi, F., S. A. Weston, M. M. Redfield, S. J. Jacobsen, S. Pakhomov, V. T. Nkomo, R. A. Meverden, and V. L. Roger. Systolic and diastolic heart failure in the community. J. Am. Med. Assoc. 296:2209–2216, 2006.CrossRefGoogle Scholar
  7. 7.
    Carlsson, M., M. Ugander, E. Heiberg, and H. Arheden. The quantitative relationship between longitudinal and radial function in left, right, and total heart pumping in humans. Am. J. Physiol. Heart Circ. Physiol. 293:H636–H644, 2007.PubMedCrossRefGoogle Scholar
  8. 8.
    Caro, C., T. Pedley, R. Schroter, and W. Seed. The Mechanics of the Circulation. London: Oxford University Press, 1978.Google Scholar
  9. 9.
    Chung, C. S., D. M. Ajo, and S. J. Kovács. Isovolumic pressure-to-early rapid filling decay rate relation: model-based derivation and validation via simultaneous catheterization echocardiography. J. Appl. Physiol. 100:528–534, 2006.PubMedCrossRefGoogle Scholar
  10. 10.
    Courtois, M. R., S. J. Kovács, Jr., and P. A. Ludbrook. Physiologic early diastolic pressure gradient is lost during acute myocardial ischemia. Circulation 81:1688–1696, 1990.PubMedCrossRefGoogle Scholar
  11. 11.
    Curi, M. A., C. L. Skelly, C. Quint, S. L. Meyerson, A. J. Farmer, U. M. Shakur, F. Loth, and L. B. Schwartz. Longitudinal impedance is independent of outflow resistance. J. Surg. Res. 108:191–197, 2002.Google Scholar
  12. 12.
    De Mey, S. K. Dumont, J. Geeraerts, P. Vandervoort, and P. Verdonck. Non-invasive assessment of left ventricular longitudinal impedance using color M-mode Doppler echocardiography. Comput. Cardiol. 27:17–20, 2000.Google Scholar
  13. 13.
    Eaton, G. M., R. J. Cody, and P. F. Binkley. Increased aortic impedance precedes peripheral vasoconstriction at the early stage of ventricular failure in the paced canine model. Circulation 88:2714–2721, 1993.Google Scholar
  14. 14.
    Ghosh, E., and S. J. Kovács. Longitudinal and transverse impedance can quantify left ventricular diastolic function. J. Am. Coll. Cardiol. 59(13s1):E1063–E1063, 2012.CrossRefGoogle Scholar
  15. 15.
    Ghosh, E., and S. J. Kovács. Quantitative assessment of left ventricular diastolic function via longitudinal and transverse flow impedances. Conf. Proc. IEEE Eng. Med. Biol. Soc. 5595–5598, 2012.Google Scholar
  16. 16.
    Ghosh, E., L. Shmuylovich, and S. J. Kovács. Vortex formation time- to- left ventricular early rapid filling relation: model-based prediction with echocardiographic validation. J. Appl. Physiol. 109:1812–1819, 2010.PubMedCrossRefGoogle Scholar
  17. 17.
    Greenberg, N. L., P. M. Vandervoort, M. S. Firstenberg, M. J. Garcia, and J. D. Thomas. Estimation of diastolic intraventricular pressure gradients by Doppler M-mode echocardiography. Am. J. Physiol. Heart Circ. Physiol. 280:H2507–H2515, 2001.PubMedGoogle Scholar
  18. 18.
    Hall, A. F., and S. J. Kovács. Automated method for characterization of diastolic transmitral Doppler velocity contours: early rapid filling. Ultrasound Med. Biol. 20:107–116, 1994.PubMedCrossRefGoogle Scholar
  19. 19.
    Hall, A. F., S. P. Nudelman, and S. J. Kovács. Evaluation of model-based processing algorithms for averaged transmitral spectral Doppler images. Ultrasound Med. Biol. 24:55–66, 1998.PubMedCrossRefGoogle Scholar
  20. 20.
    Katz, L. N. The role played by the ventricular relaxation process in filling the ventricle. Am. J. Physiol. 95:542–553, 1930.Google Scholar
  21. 21.
    Maeder, M. T., and D. M. Kaye. Heart failure with normal left ventricular ejection fraction. J. Am. Coll. Cardiol. 53:905–918, 2009.PubMedCrossRefGoogle Scholar
  22. 22.
    Merillon, J. P., G. J. Fontenier, J. F. Lerallut, M. Y. Jaffrin, G. A. Motte, C. P. Genain, and R. R. Gourgon. Aortic input impedance in normal man and arterial hypertension: its modification during changes in aortic pressure. Cardiovasc. Res. 16:646–656, 1982.PubMedCrossRefGoogle Scholar
  23. 23.
    Milde, J., M. Sessoms, J. Lisauskas, A. W. Bowman, M. Courtois, and S. J. Kovács. Ventricular diastolic impedance: a new index of global diastolic function. J. Am. Coll. Cardiol. 53, 2000.Google Scholar
  24. 24.
    Milde, J. M., M. W. Sessoms, J. B. Lisauskas, M. Courtois, J. Singh, and S. J. Kovács. Ventricular diastolic impedance Z(t): validation of a new, model-based image processing derived index of global diastolic function. In: Proceedings of the 1st Joint BMES/EMBS Conference, Vol. 1, 1999.Google Scholar
  25. 25.
    Milnor, W. R. Hemodynamics. Baltimore, MD: Williams & Wilkins, 1982.Google Scholar
  26. 26.
    Milnor, W. R. Arterial impedance as ventricular afterload. Circ. Res. 36:565–570, 1975.PubMedCrossRefGoogle Scholar
  27. 27.
    Murgo, J. P., N. Westerhof, J. P. Giolma, and S. A. Altobelli. Aortic input impedance in normal man: relationship to pressure wave forms. Circulation 62:105–116, 1980.PubMedCrossRefGoogle Scholar
  28. 28.
    Nagueh, S. F., C. P. Appleton, T. C. Gillebert, P. N. Marino, J. K. Oh, O. A. Smiseth, A. D. Waggoner, F. A. Flachskampf, P. A. Pellikka, and A. Evangelista. Recommendations for the evaluation of left ventricular diastolic function by echocardiography. Eur. J. Echocardiogr. 10:165–193, 2009.PubMedCrossRefGoogle Scholar
  29. 29.
    Nichols, W., and M. O’Rourke. McDonald’s Blood Flow in Arteries. London: Hodder & Arnold, 2005.Google Scholar
  30. 30.
    O’Rourke, M. F. Pressure and flow waves in systemic arteries and the anatomical design of the arterial system. J. Appl. Physiol. 23:139–149, 1967.PubMedGoogle Scholar
  31. 31.
    O’Rourke, M. F., and M. Taylor. Vascular impedance of the femoral bed. Circ. Res. 18:126–139, 1966.CrossRefGoogle Scholar
  32. 32.
    Pepine, C. J., and W. W. Nichols. Aortic input impedance in cardiovascular disease. Prog. Cardiovasc. Dis. 24:307–318, 1982.PubMedCrossRefGoogle Scholar
  33. 33.
    Robinson, T. F., S. M. Factor, and E. H. Sonnenblick. The heart as a suction pump. Sci. Am. 254(6):84–91, 1986.PubMedCrossRefGoogle Scholar
  34. 34.
    Shmuylovich, L., and S. J. Kovács. Stiffness and relaxation components of the exponential and logistic time constants may be used to derive a load-independent index of isovolumic pressure decay. Am. J. Physiol. Heart Circ. Physiol. 295:H2551–H2559, 2008.PubMedCrossRefGoogle Scholar
  35. 35.
    Toger, J., M. Carlsson, G. Soderlind, H. Arheden, and E. Heiberg. Volume tracking: a new method for quantitative assessment and visualization of intracardiac blood flow from three-dimensional, time-resolved, three-component magnetic resonance velocity mapping. BMC Med. Imaging 11:10, 2011.PubMedCrossRefGoogle Scholar
  36. 36.
    Westerhof, N., N. Stergiopulos, and M. I. M. Noble. Snapshots of Hemodynamics (2nd ed.). New York: Springer, 2010.CrossRefGoogle Scholar
  37. 37.
    Wu, Y., A. W. Bowman, and S. J. Kovács. Frequency-based analysis of diastolic function: the early rapid filling phase generates negative intraventricular wave reflections. Cardiovasc. Eng. 5:1–12, 2005.CrossRefGoogle Scholar
  38. 38.
    Wu, Y., and S. J. Kovács. Frequency-based analysis of the early, rapid-filling pressure–flow relation elucidates diastolic efficiency mechanisms. Am. J. Physiol. Heart Circ. Physiol. 291:H2942–H2949, 2006.PubMedCrossRefGoogle Scholar
  39. 39.
    Yano, M., M. Kohno, S. Kobayashi, M. Obayashi, K. Seki, T. Ohkusa, T. Miura, T. Fujii, and M. Matsuzaki. Influence of timing and magnitude of arterial wave reflection on left ventricular relaxation. Am. J. Physiol. Heart Circ. Physiol. 280:H1846–H1852, 2001.PubMedGoogle Scholar
  40. 40.
    Yin, F. C., M. L. Weisfeldt, and W. R. Milnor. Role of aortic input impedance in the decreased cardiovascular response to exercise with aging in dogs. J. Clin. Invest. 68:28–38, 1981.PubMedCrossRefGoogle Scholar

Copyright information

© Biomedical Engineering Society 2013

Authors and Affiliations

  1. 1.Cardiovascular Biophysics Laboratory, Cardiovascular DivisionWashington University School of MedicineSt. LouisUSA

Personalised recommendations