Skip to main content
Log in

Vortices Formed on the Mitral Valve Tips Aid Normal Left Ventricular Filling

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

For the left ventricle (LV) to function as an effective pump it must be able to fill from a low left atrial pressure. However, this ability is lost in patients with heart failure. We investigated LV filling by measuring the cardiac blood flow using 2D phase contrast magnetic resonance imaging and quantified the intraventricular pressure gradients and the strength and location of vortices. In normal subjects, blood flows towards the apex prior to the mitral valve opening, and the mitral annulus moves rapidly away after the valve opens, with both effects enhancing the vortex ring at the mitral valve tips. Instead of being a passive by-product of the process as was previously believed, this ring facilitates filling by reducing convective losses and enhancing the function of the LV as a suction pump. The virtual channel thus created by the vortices may help insure efficient mass transfer for the left atrium to the LV apex. Impairment of this mechanism contributes to diastolic dysfunction, with LV filling becoming dependent on left atrial pressure, which can lead to eventual heart failure. Better understanding of the mechanics of this progression may lead to more accurate diagnosis and treatment of this disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

Abbreviations

DCM:

Dilated cardiomyopathy

FTLE:

Finite time Lyapunov exponents

LA:

Left atrium

LCS:

Lagrangian coherent structures

LV:

Left ventricle

LVDD:

Left ventricular diastolic dysfunction

MV:

Mitral valve

MRI:

Magnetic resonance imaging

pcMRI:

Phase contrast MRI

POD:

Proper orthogonal decomposition

RV:

Right ventricle

SNR:

Signal to noise ratio

References

  1. Appleton, C. P. Doppler assessment of left ventricular diastolic function: the refinements continue. J. Am. Coll. Cardiol. 21(7):1697–1700, 1993.

    Article  PubMed  CAS  Google Scholar 

  2. Berkooz, G., P. Holmes, and J. L. Lumley. The proper orthogonal decomposition in the analysis of turbulent flows. Annu. Rev. Fluid Mech. 25:539–575, 1993.

    Article  Google Scholar 

  3. Brucks, S., W. C. Little, T. Chao, D. W. Kitzman, D. Wesley-Farrington, S. Gandhi, and Z. K. Shihabi. Contribution of left ventricular diastolic dysfunction to heart failure regardless of ejection fraction. Am. J. Cardiol. 95(5):603–606, 2005.

    Article  PubMed  Google Scholar 

  4. Brun, P., C. Tribouilloy, A.-M. Duval, L. Iserin, A. Meguira, G. Pelle, and J.-L. Dubois-Rande. Left ventricular flow propagation during early filling is related to wall relaxation: a color M-mode Doppler analysis. J. Am. Coll. Cardiol. 20(2):420–432, 1992.

    Article  PubMed  CAS  Google Scholar 

  5. Buckberg, G. D., M. Castellá, M. Gharib, and S. Saleh. Active myocyte shortening during the ‘isovolumetric relaxation’ phase of diastole is responsible for ventricular suction; ‘systolic ventricular filling’. Eur. J. Cardiothorac. Surg. 29(Supplement 1):S98–S106, 2006.

    Article  PubMed  Google Scholar 

  6. Buyens, F., O. Jolivet, A. D. Cesare, J. Bittoun, A. Herment, J.-P. Tasu, and E. Mousseaux. Calculation of left ventricle relative pressure distribution in MRI using acceleration data. Magn. Reson. Med. 53(4):877–884, 2005.

    Article  PubMed  Google Scholar 

  7. Charonko, J. J., C. V. King, B. L. Smith, and P. P. Vlachos. Assessment of pressure field calculations from particle image velocimetry measurements. Meas. Sci. Technol. 21:105401, 2010.

    Article  Google Scholar 

  8. Cheng, C. P., Y. Igarashi, and W. C. Little. Mechanism of augmented rate of left ventricular filling during exercise. Circ. Res. 70(1):9–19, 1992.

    Article  PubMed  CAS  Google Scholar 

  9. Claessens, T. E., J. De Sutter, D. Vanhercke, P. Segers, and P. R. Verdonck. New echocardiographic applications for assessing global left ventricular diastolic function. Ultrasound Med. Biol. 33(6):823–841, 2007.

    Article  PubMed  Google Scholar 

  10. Courtois, M., S. J. Kovács, and P. A. Ludbrook. Transmitral pressure–flow velocity relation. Importance of regional pressure gradients in the left ventricle during diastole. Circulation 78(3):661–671, 1988.

    Article  PubMed  CAS  Google Scholar 

  11. Dabiri, J. O., and M. Gharib. Delay of vortex ring pinchoff by an imposed bulk counterflow. Phys. Fluids 16(4):L28–L30, 2004.

    Article  CAS  Google Scholar 

  12. Domenichini, F., G. Pedrizzetti, and B. Baccani. Three-dimensional filling flow into a model left ventricle. J. Fluid Mech. 539:179–198, 2005.

    Article  Google Scholar 

  13. Ebbers, T., L. Wigstrom, A. F. Bolger, J. Engvall, and M. Karlsson. Characterization of left ventricular diastolic function in hypertension by use of Doppler tissue imaging and color M-mode techniques. Magn. Reson. Med. 45(5):872–879, 2001.

    Article  PubMed  CAS  Google Scholar 

  14. Garcia, M. J., J. D. Thomas, and A. L. Klein. New Doppler echocardiographic applications for the study of diastolic function. J. Am. Coll. Cardiol. 32(4):865–875, 1998.

    Article  PubMed  CAS  Google Scholar 

  15. Gharib, M., E. Rambod, A. Kheradvar, D. J. Sahn, and J. O. Dabiri. Optimal vortex formation as an index of cardiac health. Proc. Natl. Acad. Sci. U. S. A. 103(16):6305–6308, 2006.

    Article  PubMed  CAS  Google Scholar 

  16. Greenberg, N. L., P. M. Vandervoort, M. S. Firstenberg, M. J. Garcia, and J. D. Thomas. Estimation of diastolic intraventricular pressure gradients by Doppler M-mode echocardiography. Am. J. Physiol. Heart Circ. Physiol. 280(6):H2507–H2515, 2001.

    PubMed  CAS  Google Scholar 

  17. Haller, G. Lagrangian structures and the rate of strain in a partition of two-dimensional turbulence. Phys. Fluids 13(11):3365–3385, 2001.

    Article  CAS  Google Scholar 

  18. Haller, G. Lagrangian coherent structures from approximate velocity data. Phys. Fluids 14(6):1851–1861, 2002.

    Article  CAS  Google Scholar 

  19. Hasegawa, H., W. C. Little, M. Ohno, S. Brucks, A. Morimoto, H.-J. Cheng, and C.-P. Cheng. Diastolic mitral annular velocityduring the development of heart failure. J. Am. Coll. Cardiol. 41(9):1590–1597, 2003.

    Article  PubMed  Google Scholar 

  20. Hong, G.-R., G. Pedrizzetti, G. Tonti, P. Li, Z. Wei, J. K. Kim, A. Baweja, S. Liu, N. Chung, H. Houle, J. Narula, and M. A. Vannan. Characterization and quantification of vortex flow in the human left ventricle by contrast echocardiography using vector particle image velocimetry. J. Am. Coll. Cardiol. Imaging 6:705–717, 2008.

    Google Scholar 

  21. Jeong, J., and F. Hussain. On the identification of a vortex. J. Fluid Mech. 285:69–94, 1995.

    Article  Google Scholar 

  22. Katz, L. N. The role played by the ventricular relaxation process in filling the ventricle. Am. J. Physiol. 95(3):542–553, 1930.

    Google Scholar 

  23. Kheradvar, A., and M. Gharib. Influence of ventricular pressure drop on mitral annulus dynamics through the process of vortex ring formation. Ann. Biomed. Eng. 35(12):2050–2064, 2007.

    Article  PubMed  Google Scholar 

  24. Kheradvar, A., M. Milano, and M. Gharib. Correlation between vortex ring formation and mitral annulus dynamics during ventricular rapid filling. ASAIO J. 53(1):8–16, 2007.

    Article  PubMed  Google Scholar 

  25. Kilner, P. J., G.-Z. Yang, A. J. Wilkes, R. H. Mohiaddin, D. N. Firmin, and M. H. Yacoub. Asymmetric redirection of flow through the heart. Nature 404:759–761, 2000.

    Article  PubMed  CAS  Google Scholar 

  26. Kumar, R., J. Charonko, W. G. Hundley, C. A. Hamilton, K. C. Stewart, G. R. McNeal, P. P. Vlachos, and W. C. Little. Assessment of left ventricular diastolic function using 4-dimensional phase-contrast cardiac magnetic resonance. J. Comput. Assist. Tomogr. 35(1):108–112, 2011.

    Article  PubMed  Google Scholar 

  27. Lew, W. Y. W. Evaluation of left-ventricular diastolic function. Circulation 79(6):1393–1397, 1989.

    Article  PubMed  CAS  Google Scholar 

  28. Little, W. C. Diastolic dysfunction beyond distensibility: adverse effects of ventricular dilatation. Circulation 112(19):2888–2890, 2005.

    PubMed  Google Scholar 

  29. Little, W. C., and J. K. Oh. Echocardiographic evaluation of diastolic function can be used to guide clinical care. Circulation 120(9):802–809, 2009.

    Article  PubMed  Google Scholar 

  30. Liu, X., and J. Katz. Instantaneous pressure and material acceleration measurements using a four-exposure PIV system. Exp. Fluids 41(2):227–240, 2006.

    Article  Google Scholar 

  31. Nagueh, S. F., C. P. Appleton, T. C. Gillebert, P. N. Marino, J. K. Oh, O. A. Smiseth, A. D. Waggoner, F. A. Flachskampf, P. A. Pellikka, and A. Evangelista. Recommendations for the evaluation of left ventricular diastolic function by echocardiography. J. Am. Soc. Echocardiogr. 22(2):107–133, 2009.

    Article  PubMed  Google Scholar 

  32. Narula, J., M. A. Vannan, and A. N. DeMaria. Of that waltz in my heart. J. Am. Coll. Cardiol. 49(8):917–920, 2007.

    Article  PubMed  Google Scholar 

  33. Nishimura, M. D., and M. D. Tajik. Evaluation of diastolic filling of left ventricle in health and disease: Doppler echocardiography is the clinician’s Rosetta stone. J. Am. Coll. Cardiol. 30(1):8–18, 1997.

    Article  PubMed  CAS  Google Scholar 

  34. Ohno, M., C. P. Cheng, and W. C. Little. Mechanism of altered patterns of left ventricular filling during the development of congestive heart failure. Circulation 89(5):2241–2250, 1994.

    Article  PubMed  CAS  Google Scholar 

  35. Ohte, N., H. Narita, S. Akita, K. Kurokawa, J. Hayano, M. Sugawara, and G. Kimura. The mechanism of emergence and clinical significance of apically directed intraventricular flow during isovolumic relaxation. J. Am. Soc. Echocardiogr. 15(7):715–722, 2002.

    Article  PubMed  Google Scholar 

  36. Pasipoularides, A. Heart’s Vortex: Intracardiac Blood Flow Phenomena. Shelton, CT: PMPH-USA, 2009.

    Google Scholar 

  37. Pasipoularides, A. Diastolic filling vortex forces and cardiac adaptations: probing the epigenetic nexus. Hellenic J. Cardiol. 53:458–469, 2012.

    PubMed  Google Scholar 

  38. Redfield, M. M., S. J. Jacobsen, J. C. Burnett, D. W. Mahoney, K. R. Bailey, and R. J. Rodeheffer. Burden of systolic and diastolic ventricular dysfunction in the community: appreciating the scope of the heart failure epidemic. JAMA 289(2):194–202, 2003.

    Article  PubMed  Google Scholar 

  39. Riordan, M. M., and S. J. Kovács. Elucidation of spatially distinct compensatory mechanisms in diastole: radial compensation for impaired longitudinal filling in left ventricular hypertrophy. J. Appl. Physiol. 104(2):513–520, 2008.

    Article  PubMed  Google Scholar 

  40. Rovner, A., L. de las Fuentes, A. D. Waggoner, N. Memon, R. Chohan, and V. G. Davila-Roman. Characterization of left ventricular diastolic function in hypertension by use of Doppler tissue imaging and color M-mode techniques. J. Am. Soc. Echocardiogr. 19:872–879, 2006.

    Article  PubMed  Google Scholar 

  41. Sengupta, P. P., B. K. Khandheria, J. Korinek, A. Jahangir, S. Yoshifuku, I. Milosevic, and M. Belohlavek. Left ventricular isovolumic flow sequence during sinus and paced rhythms: new insights from use of high-resolution Doppler and ultrasonic digital particle imaging velocimetry. J. Am. Coll. Cardiol. 49(8):899–908, 2007.

    Article  PubMed  Google Scholar 

  42. Sengupta, P. P., B. K. Khandheria, J. Korinek, J. Wang, A. Jahangir, J. B. Seward, and M. Belohlavek. Apex-to-base dispersion in regional timing of left ventricular shortening and lengthening. J. Am. Coll. Cardiol. 47:163–172, 2005.

    Article  PubMed  Google Scholar 

  43. Shortland, A. P., R. A. Black, J. C. Jarvis, F. S. Henry, F. Iudicello, M. W. Collins, and S. Salmons. Formation and travel of vortices in model ventricles: application to the design of skeletal muscle ventricles. J. Biomech. 29(4):503–511, 1996.

    Article  PubMed  CAS  Google Scholar 

  44. Steen, T., and S. Steen. Filling of a model left ventricle studied by colour M mode Doppler. Cardiovasc. Res. 28(12):1821–1827, 1994.

    Article  PubMed  CAS  Google Scholar 

  45. Stewart, K. C., J. C. Charonko, C. L. Niebel, C. Little, and P. P. Vlachos. Left ventricle filling vortex formation is unaffected by diastolic impairment. Am. J. Physiol. Heart Circ. Physiol. 303(10):H1255–H1262, 2012.

    Google Scholar 

  46. Stewart, K. C., R. Kumar, J. J. Charonko, T. Ohara, P. P. Vlachos, and W. C. Little. Evaluation of LV diastolic function from color M-mode echocardiography. J. Am. Coll. Cardiol. Cardiovasc. Imaging 4(1):37–46, 2011.

    Article  Google Scholar 

  47. Stoylen, A., G. Skjelvan, and T. Skjaerpe. Flow propagation velocity is not a simple index of diastolic function in early filling. A comparative study of early diastolic strain rate and strain rate propagation, flow and flow propagation in normal and reduced diastolic function. Cardiovasc. Ultrasound 1(1):3, 2003.

    Article  PubMed  Google Scholar 

  48. Stugaard, M., U. Brodahl, H. Torp, and H. Ihlen. Abnormalities of left ventricular filling in patients with coronary artery disease: assessment by colour M-mode Doppler technique. Eur. Heart J. 15(3):318–327, 1994.

    PubMed  CAS  Google Scholar 

  49. Thompson, R. B., and E. R. McVeigh. Fast measurement of intracardiac pressure differences with 2D breath-hold phase-contrast MRI. Magn. Reson. Med. 49(6):1056–1066, 2003.

    Article  PubMed  Google Scholar 

  50. Töger, J., M. Kanski, M. Carlsson, S. Kovács, G. Söderlind, H. Arheden, and E. Heiberg. Vortex ring formation in the left ventricle of the heart: analysis by 4D flow MRI and Lagrangian coherent structures. Ann. Biomed. Eng. 40:2652–2662, 2012.

    Article  PubMed  Google Scholar 

  51. Tyszka, J. M., D. H. Laidlaw, J. W. Asa, and J. M. Silverman. Three-dimensional, time-resolved (4D) relative pressure mapping using magnetic resonance imaging. J. Magn. Reson. Imaging 12(2):321–329, 2000.

    Article  PubMed  CAS  Google Scholar 

  52. Vierendeels, J. A., E. Dick, and P. R. Verdonck. Hydrodynamics of color M-mode Doppler flow wave propagation velocity V(p): a computer study. J. Am. Soc. Echocardiogr. 15(3):219–224, 2002.

    Article  PubMed  Google Scholar 

  53. Vierendeels, J. A., K. Riemslagh, E. Dick, and P. R. Verdonck. Computer simulation of intraventricular flow and pressure gradients during diastole. J. Biomech. Eng. 122(6):667–674, 2000.

    Article  PubMed  CAS  Google Scholar 

  54. Westerweel, J., and F. Scarano. Universal outlier detection for PIV data. Exp. Fluids 39(6):1096–1100, 2005.

    Article  Google Scholar 

  55. Zhou, J., R. J. Adrian, S. Balachandar, and T. M. Kendall. Mechanisms for generating coherent packets of hairpin vortices in channel flow. J. Fluid Mech. 387:353–396, 1999.

    Article  Google Scholar 

Download references

Acknowledgments

Dr. G. Hundley, MD and Dr. C. Hamilton, PhD are gratefully acknowledged for their help in obtaining the clinical MRI data. The authors would also like to thank Cassie Niebel for her help with image segmentation. This material is based upon work supported under a National Science Foundation Graduate Research Fellowship, National Science Foundation Grant No. 0547434, and a National Institutes of Health R21 Grant No. HL106276-01A1.

Conflict of interest

We confirm that all authors have no conflicts of interest to declare.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pavlos P. Vlachos.

Additional information

Associate Editor Aleksander S. Popel oversaw the review of this article.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 703 kb)

10439_2013_755_MOESM2_ESM.mpg

Movie S1: Animation of the velocity vectors, relative pressures, and vortical structures for a representative healthy patient. Supplementary material 2 (MPG 645 kb)

10439_2013_755_MOESM3_ESM.mpg

Movie S2: Animation of the velocity vectors, relative pressures, and vortical structures for a representative LVDD patient. Supplementary material 3 (MPG 666 kb)

10439_2013_755_MOESM4_ESM.mpg

Movie S3: Animation of the velocity vectors, relative pressures, and vortical structures for the patient with dilated cardiomyopathy. Supplementary material 4 (MPG 647 kb)

Movie S4: Animation of the FTLE fields for a representative healthy patient, showing LCS and the effect of the vortex pair on the virtual channel. Supplementary material 5 (MPG 349 kb)

Movie S5: Animation of the FTLE fields for a representative LVDD patient, showing LCS and the effect of the vortex pair on the virtual channel. Supplementary material 6 (MPG 372 kb)

Movie S6: Animation of the FTLE fields for the patient with dilated cardiomyopathy, showing LCS and the effect of the vortex pair on the virtual channel. Supplementary material 7 (MPG 350 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Charonko, J.J., Kumar, R., Stewart, K. et al. Vortices Formed on the Mitral Valve Tips Aid Normal Left Ventricular Filling. Ann Biomed Eng 41, 1049–1061 (2013). https://doi.org/10.1007/s10439-013-0755-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-013-0755-0

Keywords

Navigation