Skip to main content
Log in

Non-Destructive Analysis of Extracellular Matrix Development in Cardiovascular Tissue-Engineered Constructs

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

In the field of tissue engineering, there is an increasing demand for non-destructive methods to quantify the synthesis of extracellular matrix (ECM) components such as collagens, elastin or sulphated glycosaminoglycans (sGAGs) in vitro as a quality control before clinical use. In this study, procollagen I carboxyterminal peptide (PICP), procollagen III aminoterminal peptide (PIIINP), tropoelastin and sGAGs are investigated for their potential use as non-destructive markers in culture medium of statically cultivated cell-seeded fibrin gels. Measurement of PICP as marker for type I collagen synthesis, and PIIINP as marker of type III collagen turnover, correlated well with the hydroxyproline content of the fibrin gels, with a Pearson correlation coefficient of 0.98 and 0.97, respectively. The measurement of tropoelastin as marker of elastin synthesis correlated with the amount of elastin retained in fibrin gels with a Pearson correlation coefficient of 0.99. sGAGs were retained in fibrin gels, but were not detectable in culture medium at any time of measurement. In conclusion, this study demonstrates the potential of PICP and tropoelastin as non-destructive culture medium markers for collagen and elastin synthesis. To our knowledge, this is the first study in cardiovascular tissue engineering investigating the whole of here proposed biomarkers of ECM synthesis to monitor the maturation process of developing tissue non-invasively, but for comprehensive assessment of ECM development, these biomarkers need to be investigated in further studies, employing dynamic cultivation conditions and more complex tissue constructs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Ahmann, K. A., J. S. Weinbaum, S. L. Johnson, and R. T. Tranquillo. Fibrin degradation enhances vascular smooth muscle cell proliferation and matrix deposition in fibrin-based tissue constructs fabricated in vitro. Tissue Eng. A 16:3261–3270, 2010.

    Article  CAS  Google Scholar 

  2. Burgeson, R. E., and M. E. Nimni. Collagen types. Molecular structure and tissue distribution. Clin. Orthop. Relat. Res. 282:250–272, 1992.

    PubMed  Google Scholar 

  3. Cholewinski, E., M. Dietrich, T. C. Flanagan, T. Schmitz-Rode, and S. Jockenhoevel. Tranexamic acid—an alternative to aprotinin in fibrin-based cardiovascular tissue engineering. Tissue Eng. A 15:3645–3653, 2009.

    Article  CAS  Google Scholar 

  4. Divya, P., and L. K. Krishnan. Glycosaminoglycans restrained in a fibrin matrix improve ECM remodelling by endothelial cells grown for vascular tissue engineering. J. Tissue Eng. Regen. Med. 3:377–388, 2009.

    Article  PubMed  CAS  Google Scholar 

  5. Engelmayr, Jr., G. C., E. Rabkin, F. W. Sutherland, F. J. Schoen, J. E. Mayer, Jr., and M. S. Sacks. The independent role of cyclic flexure in the early in vitro development of an engineered heart valve tissue. Biomaterials. 26:175–187, 2005.

    Article  PubMed  CAS  Google Scholar 

  6. Fite, B. Z., M. Decaris, Y. Sun, A. Lam, C. K. Ho, J. K. Leach, and L. Marcu. Noninvasive multimodal evaluation of bioengineered cartilage constructs combining time-resolved fluorescence and ultrasound imaging. Tissue Eng. C Methods. 17:495–504, 2011.

    Article  CAS  Google Scholar 

  7. Flanagan, T. C., C. Cornelissen, S. Koch, B. Tschoeke, J. S. Sachweh, T. Schmitz-Rode, and S. Jockenhoevel. The in vitro development of autologous fibrin-based tissue-engineered heart valves through optimised dynamic conditioning. Biomaterials 28:3388–3397, 2007.

    Article  PubMed  CAS  Google Scholar 

  8. Flanagan, T. C., B. Wilkins, A. Black, S. Jockenhoevel, T. J. Smith, and A. S. Pandit. A collagen-glycosaminoglycan co-culture model for heart valve tissue engineering applications. Biomaterials 27:2233–2246, 2006.

    Article  PubMed  CAS  Google Scholar 

  9. Gupta, V., J. A. Werdenberg, J. S. Mendez, and K. Jane Grande-Allen. Influence of strain on proteoglycan synthesis by valvular interstitial cells in three-dimensional culture. Acta Biomater. 4:88–96, 2009.

    Article  Google Scholar 

  10. Halme, T., T. Vihersaari, and R. Penttinen. Lysyl oxidase activity and synthesis of desmosines in cultured human aortic cells and skin fibroblasts: comparison of cell lines from control subjects and patients with the Marfan syndrome or other annulo-aortic ectasia. Scand. J. Clin. Lab. Invest. 46:31–37, 1986.

    Article  PubMed  CAS  Google Scholar 

  11. Hoffman-Kim, D., M. S. Maish, P. M. Krueger, H. Lukoff, A. Bert, T. Hong, and R. A. Hopkins. Comparison of three myofibroblast cell sources for the tissue engineering of cardiac valves. Tissue Eng. 11:288–301, 2005.

    Article  PubMed  CAS  Google Scholar 

  12. Jensen, L. T., and N. B. Host. Collagen: scaffold for repair or execution. Cardiovasc. Res. 33:535–539, 1997.

    Article  PubMed  CAS  Google Scholar 

  13. Konig, K., K. Schenke-Layland, I. Riemann, and U. A. Stock. Multiphoton autofluorescence imaging of intratissue elastic fibers. Biomaterials 26:495–500, 2005.

    Article  PubMed  CAS  Google Scholar 

  14. Kreitz, S., G. Dohmen, S. Hasken, T. Schmitz-Rode, P. Mela, and S. Jockenhoevel. Nondestructive method to evaluate the collagen content of fibrin-based tissue engineered structures via ultrasound. Tissue Eng. C Methods 17:1021–1026, 2011.

    Article  CAS  Google Scholar 

  15. Lieber, C. S., D. G. Weiss, and F. Paronetto. Value of fibrosis markers for staging liver fibrosis in patients with precirrhotic alcoholic liver disease. Alcohol. Clin. Exp. Res. 32:1031–1039, 2008.

    Article  PubMed  CAS  Google Scholar 

  16. Long, J. L., and R. T. Tranquillo. Elastic fiber production in cardiovascular tissue-equivalents. Matrix Biol. 22:339–350, 2003.

    Article  PubMed  CAS  Google Scholar 

  17. Mori, K., A. Shioi, S. Jono, Y. Nishizawa, and H. Morii. Dexamethasone enhances In vitro vascular calcification by promoting osteoblastic differentiation of vascular smooth muscle cells. Arterioscler. Thromb. Vasc. Biol. 19:2112–2118, 1999.

    Article  PubMed  CAS  Google Scholar 

  18. Neame, P. J., and J. D. Sandy. Cartilage aggrecan. Biosynthesis, degradation and osteoarthritis. J. Fla Med. Assoc. 81:191–193, 1994.

    PubMed  CAS  Google Scholar 

  19. Reddy, G. K., and C. S. Enwemeka. A simplified method for the analysis of hydroxyproline in biological tissues. Clin. Biochem. 29:225–229, 1996.

    Article  PubMed  CAS  Google Scholar 

  20. Sato, Y., T. Miyamoto, R. Taniguchi, Y. Nishio, T. Kita, H. Fujiwara, and Y. Takatsu. Current understanding of biochemical markers in heart failure. Med. Sci. Monit. 12:RA252–RA264, 2006.

    PubMed  CAS  Google Scholar 

  21. Schenke-Layland, K., I. Riemann, F. Opitz, K. Konig, K. J. Halbhuber, and U. A. Stock. Comparative study of cellular and extracellular matrix composition of native and tissue engineered heart valves. Matrix Biol. 23:113–125, 2004.

    Article  PubMed  CAS  Google Scholar 

  22. Seibel, M. J. Molecular markers of bone turnover: biochemical, technical and analytical aspects. Osteoporos. Int. 11(Suppl 6):S18–S29, 2000.

    Article  PubMed  Google Scholar 

  23. Stock, U. A., M. Nagashima, P. N. Khalil, G. D. Nollert, T. Herden, J. S. Sperling, A. Moran, J. Lien, D. P. Martin, F. J. Schoen, J. P. Vacanti, and J. E. Mayer, Jr. Tissue-engineered valved conduits in the pulmonary circulation. J. Thorac. Cardiovasc. Surg. 119:732–740, 2000.

    Article  PubMed  CAS  Google Scholar 

  24. Tschoeke, B., T. C. Flanagan, S. Koch, M. S. Harwoko, T. Deichmann, V. Ella, J. S. Sachweh, M. Kellomaki, T. Gries, T. Schmitz-Rode, and S. Jockenhoevel. Tissue-engineered small-caliber vascular graft based on a novel biodegradable composite fibrin-polylactide scaffold. Tissue Eng. A 15:1909–1918, 2009.

    Article  CAS  Google Scholar 

  25. Weinbaum, J. S., J. Qi, and R. T. Tranquillo. Monitoring collagen transcription by vascular smooth muscle cells in fibrin-based tissue constructs. Tissue Eng. C Methods. 16:459–467, 2010.

    Article  CAS  Google Scholar 

  26. Woessner, Jr., J. F. The determination of hydroxyproline in tissue and protein samples containing small proportions of this imino acid. Arch. Biochem. Biophys. 93:440–447, 1961.

    Article  PubMed  CAS  Google Scholar 

  27. Wu, W. J., B. Vrhovski, and A. S. Weiss. Glycosaminoglycans mediate the coacervation of human tropoelastin through dominant charge interactions involving lysine side chains. J. Biol. Chem. 274:21719–21724, 1999.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The present work has been done within a project of the Foerdergemeinschaft Deutsche Kinderherzzentren e.V. and within the Patim project, which is part of the in.nrw-innovation medical technology project and is funded by the European Union (EFRE-programme) and the NRW-Ziel2 programme. Furthermore we would like to thank the Department of Pathology, University Hospital Aachen, Germany. Author Disclosure Statement: No competing financial interests exist.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Jockenhoevel.

Additional information

Associate Editor Peter E. McHugh oversaw the review of this article.

M. Tuemen, D. V. A. Nguyen, and J. Raffius contributed equally to the study.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tuemen, M., Nguyen, D.V.A., Raffius, J. et al. Non-Destructive Analysis of Extracellular Matrix Development in Cardiovascular Tissue-Engineered Constructs. Ann Biomed Eng 41, 883–893 (2013). https://doi.org/10.1007/s10439-012-0734-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-012-0734-x

Keywords

Navigation