Skip to main content

Advertisement

Log in

Protection of Bovine Chondrocyte Phenotype by Heat Inactivation of Allogeneic Serum in Monolayer Expansion Cultures

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Cartilage defects can be addressed with replacement strategies such as autologous chondrocyte implantation (ACI). Expansion of autologous chondrocytes in vitro is an essential step to obtain the necessary cell numbers required for ACI. A major problem with this approach is dedifferentiation of chondrocytes during expansion, resulting in cells with fibroblast-like features. These cells generate cartilage tissue with fibrotic instead of hyaline characteristics. The use of serum is a common feature in most expansion protocols and a potential factor contributing to the dedifferentiation process. The aim of this study was to assess if heat inactivation of serum used in the expansion medium might be a valid approach to generate cells with an improved phenotype and in relevant numbers. We used bovine chondrocyte expansion cultures incubated with heat inactivated allogeneic serum (HIFBS) as a model system. We here show that heat inactivation protects the differentiated phenotype of chondrocytes compared to cultures with regular serum. This is not only true for primary cultures but holds up after two passages. Moreover, using relatively low cell seeding densities, clinically relevant cell numbers can already be reached after the first passage in cultures with HIFBS. In short we here introduce a simple way to improve cell quality while generating relevant amounts of cells during monolayer expansion of bovine chondrocytes in a relative short time period. Our results could have wider implications when translated to the expansion of human chondrocytes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Archer, C. W., J. McDowell, M. T. Bayliss, M. D. Stephens, and G. Bentley. Phenotypic modulation in sub-populations of human articular chondrocytes in vitro. J. Cell Sci. 97(Pt 2):361–371, 1990.

    PubMed  Google Scholar 

  2. Ayache, S., M. C. Panelli, K. M. Byrne, S. Slezak, S. F. Leitman, F. M. Marincola, et al. Comparison of proteomic profiles of serum, plasma, and modified media supplements used for cell culture and expansion. J. Transl. Med. 4:40, 2006.

    Article  PubMed  Google Scholar 

  3. Beier, F., and R. F. Loeser. Biology and pathology of Rho GTPase, PI-3 kinase-Akt, and MAP kinase signaling pathways in chondrocytes. J. Cell. Biochem. 110:573–580, 2010.

    Article  PubMed  CAS  Google Scholar 

  4. Bhosale, A. M., and J. B. Richardson. Articular cartilage: structure, injuries and review of management. Br. Med. Bull. 87:77–95, 2008.

    Article  PubMed  Google Scholar 

  5. Bosnakovski, D., M. Mizuno, G. Kim, S. Takagi, M. Okumura, and T. Fujinaga. Chondrogenic differentiation of bovine bone marrow mesenchymal stem cells (MSCs) in different hydrogels: influence of collagen type II extracellular matrix on MSC chondrogenesis. Biotechnol. Bioeng. 93:1152–1163, 2006.

    Article  PubMed  CAS  Google Scholar 

  6. Bowolaksono, A., R. Nishimura, T. Hojo, R. Sakumoto, T. J. Acosta, and K. Okuda. Anti-apoptotic roles of prostaglandin E2 and F2alpha in bovine luteal steroidogenic cells. Biol. Reprod. 79:310–317, 2008.

    Article  PubMed  CAS  Google Scholar 

  7. Brittberg, M., A. Lindahl, A. Nilsson, C. Ohlsson, O. Isaksson, and L. Peterson. Treatment of deep cartilage defects in the knee with autologous chondrocyte transplantation. N. Engl. J. Med. 331:889–895, 1994.

    Article  PubMed  CAS  Google Scholar 

  8. Brittberg, M., L. Peterson, E. Sjogren-Jansson, T. Tallheden, and A. Lindahl. Articular cartilage engineering with autologous chondrocyte transplantation. A review of recent developments. J. Bone Jt. Surg. Am. 85A(Suppl 3):109–115, 2003.

    Google Scholar 

  9. Bruinink, A., U. Tobler, M. Halg, and J. Grunert. Effects of serum and serum heat-inactivation on human bone derived osteoblast progenitor cells. J. Mater. Sci. Mater. Med. 15:497–501, 2004.

    Article  PubMed  CAS  Google Scholar 

  10. Cheng, T., N. C. Maddox, A. W. Wong, R. Rahnama, and A. C. Kuo. Comparison of gene expression patterns in articular cartilage and dedifferentiated articular chondrocytes. J. Orthop. Res. 30:234–245, 2012.

    Article  PubMed  CAS  Google Scholar 

  11. Darling, E. M., and K. A. Athanasiou. Rapid phenotypic changes in passaged articular chondrocyte subpopulations. J. Orthop. Res. 23:425–432, 2005.

    Article  PubMed  CAS  Google Scholar 

  12. Farndale, R. W., D. J. Buttle, and A. J. Barrett. Improved quantitation and discrimination of sulphated glycosaminoglycans by use of dimethylmethylene blue. Biochim. Biophys. Acta 883:173–177, 1986.

    Article  PubMed  CAS  Google Scholar 

  13. Francioli, S. E., I. Martin, C. P. Sie, R. Hagg, R. Tommasini, C. Candrian, et al. Growth factors for clinical-scale expansion of human articular chondrocytes: relevance for automated bioreactor systems. Tissue Eng. 13:1227–1234, 2007.

    Article  PubMed  CAS  Google Scholar 

  14. Giannoni, P., A. Pagano, E. Maggi, R. Arbico, N. Randazzo, M. Grandizio, et al. Autologous chondrocyte implantation (ACI) for aged patients: development of the proper cell expansion conditions for possible therapeutic applications. Osteoarthritis Cartilage 13:589–600, 2005.

    Article  PubMed  CAS  Google Scholar 

  15. Giovannini, S., J. Diaz-Romero, T. Aigner, P. Mainil-Varlet, and D. Nesic. Population doublings and percentage of S100-positive cells as predictors of in vitro chondrogenicity of expanded human articular chondrocytes. J. Cell. Physiol. 222:411–420, 2010.

    Article  PubMed  CAS  Google Scholar 

  16. Goessler, U. R., K. Bieback, P. Bugert, R. Naim, C. Schafer, H. Sadick, et al. Human chondrocytes differentially express matrix modulators during in vitro expansion for tissue engineering. Int. J. Mol. Med. 16:509–515, 2005.

    PubMed  CAS  Google Scholar 

  17. Goessler, U. R., P. Bugert, K. Bieback, A. Baisch, H. Sadick, T. Verse, et al. Expression of collagen and fiber-associated proteins in human septal cartilage during in vitro dedifferentiation. Int. J. Mol. Med. 14:1015–1022, 2004.

    PubMed  CAS  Google Scholar 

  18. Homicz, M. R., B. L. Schumacher, R. L. Sah, and D. Watson. Effects of serial expansion of septal chondrocytes on tissue-engineered neocartilage composition. Otolaryngol. Head Neck Surg. 127:398–408, 2002.

    Article  PubMed  Google Scholar 

  19. Hunziker, E. B. Articular cartilage repair: problems and perspectives. Biorheology 37:163–164, 2000.

    PubMed  CAS  Google Scholar 

  20. Jakob, M., O. Demarteau, D. Schafer, B. Hintermann, W. Dick, M. Heberer, et al. Specific growth factors during the expansion and redifferentiation of adult human articular chondrocytes enhance chondrogenesis and cartilaginous tissue formation in vitro. J. Cell. Biochem. 81:368–377, 2001.

    Article  PubMed  CAS  Google Scholar 

  21. Johnson, W. E., S. Stephan, and S. Roberts. The influence of serum, glucose and oxygen on intervertebral disc cell growth in vitro: implications for degenerative disc disease. Arthritis Res. Ther. 10:R46, 2008.

    Article  PubMed  Google Scholar 

  22. Kim, S. J., J. W. Ju, C. D. Oh, Y. M. Yoon, W. K. Song, J. H. Kim, et al. ERK-1/2 and p38 kinase oppositely regulate nitric oxide-induced apoptosis of chondrocytes in association with p53, caspase-3, and differentiation status. J. Biol. Chem. 277:1332–1339, 2002.

    Article  PubMed  CAS  Google Scholar 

  23. Lefebvre, V., C. Peeters-Joris, and G. Vaes. Production of collagens, collagenase and collagenase inhibitor during the dedifferentiation of articular chondrocytes by serial subcultures. Biochim. Biophys. Acta 1051:266–275, 1990.

    Article  PubMed  CAS  Google Scholar 

  24. Lin, Z., J. B. Fitzgerald, J. Xu, C. Willers, D. Wood, A. J. Grodzinsky, et al. Gene expression profiles of human chondrocytes during passaged monolayer cultivation. J. Orthop. Res. 26:1230–1237, 2008.

    Article  PubMed  CAS  Google Scholar 

  25. Livak, K. J., and T. D. Schmittgen. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25:402–408, 2001.

    Article  PubMed  CAS  Google Scholar 

  26. Malpeli, M., N. Randazzo, R. Cancedda, and B. Dozin. Serum-free growth medium sustains commitment of human articular chondrocyte through maintenance of Sox9 expression. Tissue Eng. 10:145–155, 2004.

    Article  PubMed  CAS  Google Scholar 

  27. Mandl, E. W., S. W. van der Veen, J. A. Verhaar, and G. J. van Osch. Multiplication of human chondrocytes with low seeding densities accelerates cell yield without losing redifferentiation capacity. Tissue Eng. 10:109–118, 2004.

    Article  PubMed  CAS  Google Scholar 

  28. Munirah, S., B. H. Ruszymah, O. C. Samsudin, A. H. Badrul, B. Azmi, and B. S. Aminuddin. Autologous versus pooled human serum for articular chondrocyte growth. J. Orthop. Surg. (Hong Kong) 16:220–229, 2008.

    CAS  Google Scholar 

  29. Munirah, S., O. C. Samsudin, B. S. Aminuddin, and B. H. Ruszymah. Expansion of human articular chondrocytes and formation of tissue-engineered cartilage: a step towards exploring a potential use of matrix-induced cell therapy. Tissue Cell 42:282–292, 2010.

    Article  PubMed  CAS  Google Scholar 

  30. Narcisi, R., R. Quarto, V. Ulivi, A. Muraglia, L. Molfetta, and P. Giannoni. TGF beta-1 administration during ex-vivo expansion of human articular chondrocytes in a serum-free medium redirects the cell phenotype toward hypertrophy. J. Cell. Physiol. 227(9):3282–3290, 2011.

    Article  Google Scholar 

  31. Nimura, A., T. Muneta, K. Otabe, H. Koga, Y. J. Ju, T. Mochizuki, et al. Analysis of human synovial and bone marrow mesenchymal stem cells in relation to heat-inactivation of autologous and fetal bovine serums. BMC Musculoskelet. Disord. 11:208, 2010.

    Article  PubMed  Google Scholar 

  32. Peterson, L., T. Minas, M. Brittberg, A. Nilsson, E. Sjogren-Jansson, and A. Lindahl. Two- to 9-year outcome after autologous chondrocyte transplantation of the knee. Clin. Orthop. Relat. Res. 374:212–234, 2000.

    Article  PubMed  Google Scholar 

  33. Plaas, A., J. Velasco, D. J. Gorski, J. Li, A. Cole, K. Christopherson, et al. The relationship between fibrogenic TGFbeta1 signaling in the joint and cartilage degradation in post-injury osteoarthritis. Osteoarthritis Cartilage 19:1081–1090, 2011.

    Article  PubMed  CAS  Google Scholar 

  34. Pohlers, D., R. Huber, B. Ukena, and R. W. Kinne. Expression of platelet-derived growth factors C and D in the synovial membrane of patients with rheumatoid arthritis and osteoarthritis. Arthritis Rheum. 54:788–794, 2006.

    Article  PubMed  CAS  Google Scholar 

  35. Radons, J., A. K. Bosserhoff, S. Grassel, W. Falk, and T. E. Schubert. p38MAPK mediates IL-1-induced down-regulation of aggrecan gene expression in human chondrocytes. Int. J. Mol. Med. 17:661–668, 2006.

    PubMed  CAS  Google Scholar 

  36. Rosenzweig, D. H., M. Matmati, G. Khayat, S. Chaudhry, and B. Hinz. Quinn T. Tissue Eng Part A: Culture of primary bovine chondrocytes on a continuously expanding surface inhibits dedifferentiation, 2012.

    Google Scholar 

  37. Rosenzweig, D. H., S. Solar-Cafaggi, and T. M. Quinn. Functionalization of dynamic culture surfaces with a cartilage extracellular matrix extract enhances chondrocyte phenotype against dedifferentiation. Acta Biomater. 8:3333–3341, 2012.

    Article  PubMed  CAS  Google Scholar 

  38. Strauss, E. J., L. E. Fonseca, M. R. Shah, and T. Yorum. Management of focal cartilage defects in the knee—is ACI the answer? Bull. NYU Hosp. Jt. Dis. 69:63–72, 2011.

    PubMed  Google Scholar 

  39. Tallheden, T., J. van der Lee, C. Brantsing, J. E. Mansson, E. Sjogren-Jansson, and A. Lindahl. Human serum for culture of articular chondrocytes. Cell Transplant. 14:469–479, 2005.

    Article  PubMed  Google Scholar 

  40. Yan, D., D. Chen, S. M. Cool, A. J. van Wijnen, K. Mikecz, G. Murphy, et al. Fibroblast growth factor receptor 1 is principally responsible for fibroblast growth factor 2-induced catabolic activities in human articular chondrocytes. Arthritis Res. Ther. 13:R130, 2011.

    Article  PubMed  CAS  Google Scholar 

  41. Yoon, Y. M., S. J. Kim, C. D. Oh, J. W. Ju, W. K. Song, Y. J. Yoo, et al. Maintenance of differentiated phenotype of articular chondrocytes by protein kinase C and extracellular signal-regulated protein kinase. J. Biol. Chem. 277:8412–8420, 2002.

    Article  PubMed  CAS  Google Scholar 

  42. Zaucke, F., R. Dinser, P. Maurer, and M. Paulsson. Cartilage oligomeric matrix protein (COMP) and collagen IX are sensitive markers for the differentiation state of articular primary chondrocytes. Biochem. J. 358:17–24, 2001.

    Article  PubMed  CAS  Google Scholar 

Download references

Funding

This work was supported by the Collaborative Health Research Programme (CIHR/NSERC) grant #1004005 to TMQ, the Natural Sciences and Engineering Research Council (NSERC) Discovery Grant #342320-07 to TMQ, a Canada Research Chair in Soft Tissue Biophysics to TMQ.

Conflict of interest

There are no competing interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas M. Quinn.

Additional information

Associate Editor Eric M. Darling oversaw the review of this article.

Author contributions

Mourad Matmati: Conception and design of the study, acquisition of the data, analysis and interpretation of the data, statistical analysis, drafting of the article. Tat Fong Ng: Acquisition of the data, analysis of the data. Derek Rosenzweig: figure revisions; critical revision of the article for important intellectual content. Thomas Quinn: Critical revision of the article for important intellectual content, final approval.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Matmati, M., Ng, T.F., Rosenzweig, D.H. et al. Protection of Bovine Chondrocyte Phenotype by Heat Inactivation of Allogeneic Serum in Monolayer Expansion Cultures. Ann Biomed Eng 41, 894–903 (2013). https://doi.org/10.1007/s10439-012-0732-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-012-0732-z

Keywords

Navigation