Skip to main content
Log in

Virtual Treatment of Basilar Aneurysms Using Shape Memory Polymer Foam

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Numerical simulations are performed on patient-specific basilar aneurysms that are treated with shape memory polymer (SMP) foam. In order to assess the post-treatment hemodynamics, two modeling approaches are employed. In the first, the foam geometry is obtained from a micro-CT scan and the pulsatile blood flow within the foam is simulated for both Newtonian and non-Newtonian viscosity models. In the second, the foam is represented as a porous media continuum, which has permeability properties that are determined by computing the pressure gradient through the foam geometry over a range of flow speeds comparable to those of in vivo conditions. Virtual angiography and additional post-processing demonstrate that the SMP foam significantly reduces the blood flow speed within the treated aneurysms, while eliminating the high-frequency velocity fluctuations that are present within the pre-treatment aneurysms. An estimation of the initial locations of thrombus formation throughout the SMP foam is obtained by means of a low fidelity thrombosis model that is based upon the residence time and shear rate of blood. The Newtonian viscosity model and the porous media model capture similar qualitative trends, though both yield a smaller volume of thrombus within the SMP foam.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13

Similar content being viewed by others

Abbreviations

BA:

Basilar artery

CFD:

Computational fluid dynamics

FHDD:

Forchheimer-Hazen-Dupuit-Darcy

GDC:

Guglielmi detachable coil

PCA:

Posterior cerebral artery

SCA:

Superior cerebellar artery

SMP:

Shape memory polymer

References

  1. Anand, M., et al. A model incorporating some of the mechanical and biochemical factors underlying clot formation and dissolution in flowing blood. J. Theor. Med. 5(3–4):183–218, 2003.

    Article  Google Scholar 

  2. Anderson, J. M. Biological responses to materials. Annu. Rev. Mater. Res. 31:81–110, 2001.

    Article  CAS  Google Scholar 

  3. Ballyk, P. D., et al. Simulation of non-Newtonian blood flow in an end-to-end anastomosis. Biorheology 31(5):565–586, 1994.

    PubMed  CAS  Google Scholar 

  4. Bedekar, A. S., et al. A computational model combining vascular biology and haemodynamics for thrombosis prediction in anatomically accurate cerebral aneurysms. Food. Bioprod. Process. 83(C2):118–126, 2005.

    Article  Google Scholar 

  5. Bernsdorf, J., et al. Applying the lattice Boltzmann technique to biofluids: a novel approach to simulate blood coagulation. Comput. Math. Appl. 55:1408–1414, 2008.

    Article  Google Scholar 

  6. Biasetti, J., et al. An integrated fluid-chemical model toward modeling the formation of intra-luminal thrombus in abdominal aortic aneurysms. Front. Physiol. 3(266):1–16, 2012.

    Google Scholar 

  7. Bodily, K. D., et al. Stent-assisted coiling in acutely ruptured intracranial aneurysms: a qualitative, systematic review of the literature. Am. J. Neuroradiol. 32:1232–1236, 2011.

    Article  PubMed  CAS  Google Scholar 

  8. Brinjikji, W., et al. Effect of age on outcomes of treatment of unruptured cerebral aneurysms: a study of the National Inpatient Sample 2001–2008. Stroke 42:1320–1324, 2011.

    Article  PubMed  Google Scholar 

  9. Cebral, J. R., and R. Löhner. Efficient simulation of blood flow past complex endovascular devices using an adaptive embedding technique. IEEE T. Med. Imaging 24(4):468–476, 2005.

    Article  Google Scholar 

  10. Cebral, J. R., et al. Computational fluid dynamics modeling of intracranial aneurysms: qualitative comparison with cerebral angiography. Acad. Radiol. 14:804–813, 2007.

    Article  PubMed  Google Scholar 

  11. Cloft, H. J., et al. Use of three-dimensional Guglielmi detachable coils in the treatment of wide-necked cerebral aneurysms. Am. J. Neuroradiol. 21:1312–1314, 2000.

    PubMed  CAS  Google Scholar 

  12. Corbett, S. C., et al. In vitro and computational thrombosis on artificial surfaces with shear stress. Artif. Organs 34(7):561–569, 2010.

    Article  PubMed  Google Scholar 

  13. Demirdzic, I., et al. A collocated finite volume method for predicting flows at all speeds. Int. J. Numer. Meth. Fl. 16:1029–1050, 1993.

    Article  CAS  Google Scholar 

  14. Demirdzic, I., and S. Musaferija. Numerical method for coupled fluid flow, heat transfer and stress analysis using unstructured moving meshes with cells of arbitrary topology. Comput. Methods Appl. Mech. Eng. 125:235–255, 1995.

    Article  Google Scholar 

  15. Duncan, D. D., et al. The effect of compliance on wall shear in casts of a human aortic bifurcation. J. Biomech. Eng.-T. ASME 112:183–188, 1990.

    Article  CAS  Google Scholar 

  16. Einav, S., and D. Bluestein. Dynamics of blood flow and platelet transport in pathological vessels. Ann. N. Y. Acad. Sci. 1015:351–366, 2004.

    Article  PubMed  Google Scholar 

  17. Ethier, C. R., and C. A. Simmons. Introductory Biomechanics: From Cells to Organisms. New York: Cambridge University Press, 2008.

  18. Evans, P. A., et al. Rheometry and associated techniques for blood coagulation studies. Med. Eng. Phys. 30:671–679, 2008.

    Article  PubMed  CAS  Google Scholar 

  19. Ferguson, G. G. Turbulence in human intracranial saccular aneurysms. J. Neurosurg. 33:485–497, 1970.

    Article  PubMed  CAS  Google Scholar 

  20. Ferziger, J. H., and M. Peric. Computational Methods for Fluid Dynamics, 3rd edition. Berlin: Springer, 2002.

  21. Fisher, C., and J. Stroud Rossmann. Effect of non-Newtonian behavior on hemodynamics of cerebral aneurysms. J. Biomech. Eng.-T. ASME 131:091004, 2009.

    Article  Google Scholar 

  22. Fogelson, A. L., and R. D. Guy. Immersed-boundary-type models of intravascular platelet aggregation. Comput. Method. Appl. M. 197:2087–2104, 2008.

    Article  Google Scholar 

  23. Friedrich, R., and A. J. Reininger. Occlusive thrombus formation on indwelling catheters: in vitro investigation and computational analysis. Thromb. Haemostasis 73(1):66–72, 1995.

    CAS  Google Scholar 

  24. Goodman, P. D., et al. Computational model of device-induced thrombosis and thromboembolism. Ann. Biomed. Eng. 33(6):780–797, 2005.

    Article  PubMed  Google Scholar 

  25. Groden, C., et al. Three-dimensional pulsatile flow simulation before and after endovascular coil embolization of a terminal cerebral aneurysm. J. Cerebr. Blood F. Met. 21:1464–1471, 2001.

    Article  CAS  Google Scholar 

  26. Harrison, S. E., et al. Application and validation of the Lattice Boltzmann method for modelling flow-related clotting. J. Biomech. 40:3023–3028, 2007.

    Article  PubMed  CAS  Google Scholar 

  27. Harrison, S. E., et al. A lattice Boltzmann framework for simulation of thrombogensis. Prog. Comput. Fluid. Dyn. 8(1–4):121–128, 2008.

    Article  Google Scholar 

  28. Hayakawa, M., et al. Detection of pulsation in ruptured and unruptured cerebral aneurysms by electrocardiographically gated 3-dimensional computed tomographic angiography with a 320-row area detector computed tomography and evaluation of its clinical usefulness. Neurosurgery 69:843–851, 2011.

    Article  PubMed  Google Scholar 

  29. Higashida, R. T., et al. Treatment of unruptured intracranial aneurysms: a nationwide assessment of effectiveness. Am. J. Neuroradiol. 28:146–151, 2007.

    PubMed  CAS  Google Scholar 

  30. Hwang, W., et al. Estimation of aneurysm wall stresses created by treatment with a shape memory polymer foam device. Biomech. Model. Mechanobiol. 11:715–729, 2012.

    Article  PubMed  Google Scholar 

  31. Johnston, B. M., et al. Non-Newtonian blood flow in human right coronary arteries: steady state simulations. J. Biomech. 37:709–720, 2004.

    Article  PubMed  Google Scholar 

  32. Jou, L.-D., et al. Determining intra-aneurysmal flow for coiled cerebral aneurysms with digital fluoroscopy. Biomed. Eng.-App. Bas. C. 16(2):43–48, 2004.

    Article  Google Scholar 

  33. Kakalis, N. M. P., et al. The haemodynamics of endovascular aneurysm treatment: a computational modelling approach for estimating the influence of multiple coil deployment. IEEE T. Bio-Med. Eng. 27(6):814–824, 2008.

    Google Scholar 

  34. Kato, T., et al. Contrast-enhanced 2D cine phase MR angiography for measurement of basilar artery blood flow in posterior circulation ischemia. Am. J. Neuroradiol. 23:1346–1351, 2002.

    PubMed  Google Scholar 

  35. Lage, J. L. The fundamental theory of flow through permeable media from Darcy to turbulence. In: Transport Phenomena in Porous Media, edited by D. B. Ingham and I. Pop. Pergamon, 1998, pp. 1–30.

  36. Larrabide, I., et al. Fast virtual deployment of self-expandable stents: method and in vitro evaluation for intracranial aneurysmal stenting. Med. Image Anal. 16(3):721–730, 2012.

    Article  PubMed  Google Scholar 

  37. Leake, C. B., et al. Increasing treatment of ruptured cerebral aneurysms at high-volume centers in the United States. J. Neurosurg. 115:1179–1183, 2011.

    Article  PubMed  Google Scholar 

  38. Maitland, D. J., et al. Prototype laser-activated shape memory polymer foam device for embolic treatment of aneurysms. J. Biomed. Opt. 12(3):030504, 2007.

    Article  PubMed  Google Scholar 

  39. Maitland, D. J., et al. Design and realization of biomedical devices based on shape memory polymers. In: Proceedings of the Material Research Society Symposium, edited by A. Lendlein and P. Shastri, 2009, 1190:NN06-01.

  40. Mathur, S. R., and J. Y. Murthy. Pressure-based method for unstructured meshes. Numer. Heat. Tr. B-Fund 31(2):195–214, 1997.

    Article  Google Scholar 

  41. Mathur, S. R., and J. Y. Murthy. Pressure boundary conditions for incompressible flow using unstructured meshes. Numer. Heat. Tr. B-Fund 32(3):283–298, 1997.

    Article  CAS  Google Scholar 

  42. Metcalfe, A., et al. Cold hibernated elastic memory foams for endovascular interventions. Biomaterials 24:491–497, 2003.

    Article  PubMed  CAS  Google Scholar 

  43. Murayama, Y., et al. Endovascular treatment of experimental aneurysms by use of a combination of liquid embolic agents and protective devices. Am. J. Neuroradiol. 21:1726–1735, 2000.

    PubMed  CAS  Google Scholar 

  44. Narracott, A., et al. Development and validation of models for the investigation of blood clotting in idealized stenoses and cerebral aneurysms. J. Artif. Organs 8:56–62, 2005.

    Article  PubMed  Google Scholar 

  45. Olinger, C. P., and J. F. Wasserman. Electronic stethoscope for detection of cerebral aneurysm, vasospasm and arterial disease. Surg. Neurol. 8:298–312, 1977.

    PubMed  CAS  Google Scholar 

  46. Ortega, J., et al. Post-treatment hemodynamics of a basilar aneurysm and bifurcation. Ann. Biomed. Eng. 36(9):1531–1546, 2008.

    Article  PubMed  CAS  Google Scholar 

  47. Ouared, R., et al. Thrombosis modeling in intracranial aneurysms: a lattice Boltzmann numerical algorithm. Comput. Phys. Commun. 179:128–131, 2008.

    Article  CAS  Google Scholar 

  48. Peric, M., et al. Comparison of finite-volume numerical methods with staggered and colocated grids. Comput. Fluids 16(4):389–403, 1988.

    Article  CAS  Google Scholar 

  49. Rayz, V. L., et al. Flow residence time and regions of intraluminal thrombus deposition in intracranial aneurysms. Ann. Biomed. Eng. 38(10):3058–3069, 2010.

    Article  PubMed  CAS  Google Scholar 

  50. Reuvers, N., and M. Golombok. Shear rate and permeability in water flooding. Transport Porous Med. 79:249–253, 2009.

    Article  Google Scholar 

  51. Roach, M. R. Changes in arterial distensibility as a cause of poststenotic dilatation. Am. J. Cardiol. 12:802–815, 1963.

    Article  PubMed  CAS  Google Scholar 

  52. Rodriguez, J. N., et al. Opacification of shape memory polymer foam designed for treatment of intracranial aneurysms. Ann. Biomed. Eng. 40(4):883–897, 2012.

    Article  PubMed  Google Scholar 

  53. Sadowski, T. J., and R. B. Bird. Non-Newtonian flow through porous media. I. Theoretical. T. Soc. Rheo. 9(2):243–250, 1965.

    Article  Google Scholar 

  54. Simkins, T. E., and W. E. Stehbens. Vibrations recorded from the adventitial surface of aneurysms and arteriovenous fistulas. Vasc. Surg. 8:153–165, 1974.

    PubMed  CAS  Google Scholar 

  55. Singhal, P., et al. Ultra low density and highly crosslinked biocompatible shape memory polyurethane foams. J. Polym. Sci. Part B. Polym. Phys. 50:724–737, 2012.

    Article  CAS  Google Scholar 

  56. Sorensen, E. N., et al. Computational simulation of platelet deposition and activation: I. Model development and properties. Ann. Biomed. Eng. 27:436–448, 1999.

    Article  PubMed  CAS  Google Scholar 

  57. Sorensen, E. N., et al. Computational simulation of platelet deposition and activation: II. Results for Poiseuille flow over collagen. Ann. Biomed. Eng. 27:449–458, 1999.

    Article  PubMed  CAS  Google Scholar 

  58. STAR-CCM+ v. 6.02.007, User Guide, CD-Adapco, http://www.cd-adapco.com.

  59. Steiger, H. J., et al. Haemodynamic stress in lateral saccular aneurysms. Acta. Neurochir. 86:98–105, 1987.

    Article  PubMed  CAS  Google Scholar 

  60. Tamagawa, M., and S. Matsuo. Predictions of thrombus formation using Lattice Boltzmann method (modeling adhesion force for particles to wall). JSME Int. J. C-Mech. Syst. 47(4):1027–1034, 2004.

    Article  Google Scholar 

  61. Ward, W. K. A review of the foreign-body response to subcutaneously-implanted devices: the role of macrophages and cytokines in biofouling and fibrosis. J. Diabetes. Sci. Technol. 2(5):768–777, 2008.

    Google Scholar 

  62. Womersley, J. R. Method for the calculation of velocity, rate of flow and viscous drag in arteries when the pressure gradient is known. J. Physiol. 127:553–563, 1955.

    PubMed  CAS  Google Scholar 

  63. Wootton, D. M., et al. A mechanistic model of acute platelet accumulation in thrombogenic stenosis. Ann. Biomed. Eng. 29:321–329, 2001.

    Article  PubMed  CAS  Google Scholar 

  64. Zhao, S. Z., et al. Blood flow and vessel mechanics in a physiologically realistic model of a human carotid arterial bifurcation. J. Biomech. 33:975–984, 2000.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank R. Cook, W. Small, and T. Wilson of Lawrence Livermore National Laboratory for their assistance in this study. This work was supported by the National Institutes of Health/National Institute of Biomedical Imaging and Bioengineering Grant R01EB000462 and partially performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. LLNL-JRNL-564718.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. M. Ortega.

Additional information

Associate Editor Kerry Hourigan oversaw the review of this article.

Electronic supplementary material

Below is the link to the electronic supplementary material.

MOV (7978 KB)

Below is the link to the electronic supplementary material.

MOV (7978 KB)MOV (7978 KB)

Below is the link to the electronic supplementary material.

MOV (7978 KB)MOV (7978 KB)MOV (7978 KB)

Below is the link to the electronic supplementary material.

MOV (7978 KB)MOV (7978 KB)MOV (7978 KB)MOV (7978 KB)

Below is the link to the electronic supplementary material.

MOV (7978 KB)MOV (7978 KB)MOV (7978 KB)MOV (7978 KB)MOV (7978 KB)

Below is the link to the electronic supplementary material.

MOV (7978 KB)MOV (7978 KB)MOV (7978 KB)MOV (7978 KB)MOV (7978 KB)MOV (7978 KB)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ortega, J.M., Hartman, J., Rodriguez, J.N. et al. Virtual Treatment of Basilar Aneurysms Using Shape Memory Polymer Foam. Ann Biomed Eng 41, 725–743 (2013). https://doi.org/10.1007/s10439-012-0719-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-012-0719-9

Keywords

Navigation