Skip to main content

Understanding the Passive Mechanical Behavior of the Human Abdominal Wall

Abstract

The aim of this work is to present a methodology to model the passive mechanical behavior of the human abdomen during physiological movements. From a mechanical point of view, it is possible to predict where hernia formation is likely to occur since the areas that support higher stresses can be identified as the most vulnerable ones. For this purpose, a realistic geometry of the human abdomen is obtained from magnetic resonance imaging. The model defines different anatomical structures of the abdomen, including muscles and aponeuroses, and anisotropic mechanical properties are assigned. The finite element model obtained from the geometric human model, which includes initial strains, is used to simulate the anisotropic passive behavior of the healthy human abdomen under intra-abdominal pressure. This study demonstrates that the stiffest structures, namely aponeuroses and particularly the linea alba, are the structures that perform the most work in the abdomen. Thus, the linea alba is the most important unit contributing to the mechanical stability of the abdominal wall.

This is a preview of subscription content, access via your institution.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Abbreviations

RA:

Rectus abdominis

ARS:

Anterior lamina of the rectus sheath

PRS:

Posterior lamina of the rectus sheath

LA:

Linea alba

FT:

Fascia transversalis

RT:

Rectus tendon

RAM:

Rectus abdominis muscle

OMT:

Oblique muscle tendon

OM:

Oblique muscles

EO:

External oblique

IO:

Internal oblique

TA:

Transversus abdominis

References

  1. Arruda, E. M., K. Mundy, S. Calve, and K. Baar. Denervation does not change the ratio of collagen I and collagen II mRNA in extracellular matrix of muscle. Am. J. Physiol. 292:983–987, 2006.

    Google Scholar 

  2. Audettea, M. A., H. Delingetteb, A. Fuschsc, Y. Kosekia, and K. Chinzeia. A procedure for computing patient-specific anatomical models for finite element-based surgical simulation. Int. Cong. Ser. 1256:356–361, 2003.

    Article  Google Scholar 

  3. Axer, H., D. G. Keyserlingk, D. Graft, and A. Prescher. Collagen fibers in linea alba and rectus sheaths: II. Variability and biomechanical aspects. J. Surg. Res. 96:239–245, 2001.

    PubMed  Article  CAS  Google Scholar 

  4. Axer, H., D. G. Keyserlingk, and A. Prescher. Collagen fibers in linea alba and rectus sheaths: I. General scheme and morphological aspects. J. Surg. Res. 96:127–134, 2001.

    PubMed  Article  CAS  Google Scholar 

  5. Bartlett, D. C., and A. N. Kingsnorth. Abdominal wound dehiscence and incisional hernia. Surgery 24(7):234–238, 2006.

    Article  Google Scholar 

  6. Bellón, J. M., A. Bajo, N. Ga-Honduvilla, M. J. Gimeno, G. Pascual, A. Guerrero, and J. Buján. Fibroblasts from the transversalis fascia of young patients with direct inguinal hernias show constitutive MMP-2 overexpression. Ann. Surg. 233(2):287–291, 2001.

    PubMed  Article  Google Scholar 

  7. Bellón-Caneiro, J. M. Abdominal wall closure in laparotomy. Cir. Esp. 77(3):114–123, 2004.

    Article  Google Scholar 

  8. Brown, S. H. M., and S. M. McGill. A comparison of ultrasound and electromyography measures of force and activation to examine the mechanics of abdominal wall contraction. Clin. Biomech. 25:115–123, 2010.

    Article  Google Scholar 

  9. Calvo, B., E. Peña, P. Martins, T. Mascarenhas, M. Doblare, R. Natal, and A. Ferreira. (2009) On modelling damage process in vaginal tissue. J. Biomech. 42:642–651, 2009.

    PubMed  Article  CAS  Google Scholar 

  10. Cobb, W. S., J. M. Burns, K. W. Kercher, B. D. Matthews, H. J. Norton, and B. T. Heniford. Normal intraabdominal pressure in healthy adults. J. Surg. Res. 129:231–235, 2005.

    PubMed  Article  Google Scholar 

  11. De Putter, S., B. J. B. M. Wolters, M. C. M. Rutten, M. Breeuwer, F. A. Gerritsen, and F. N. van de Vosse. Patient-specific initial wall stress in abdominal aortic aneurysms with a backward incremental method. J. Biomech. 40:1081–1090, 2007.

    PubMed  Article  CAS  Google Scholar 

  12. Demiray, H., H. W. Weizsacker, K. Pascale, and H. Erbay. A stress-strain relation for a rat abdominal aorta. J. Biomech. 21:369–374, 1988.

    PubMed  Article  CAS  Google Scholar 

  13. Fortuny, G., J. Rodríguez-Navarro, A. Susín, M. López-Cano. Simulation and study of the behaviour of the transversalis fascia in protecting against the genesis of inguinal hernias. J. Biomech. 42:2263–2267, 2009.

    PubMed  Article  CAS  Google Scholar 

  14. Föstemann, T., J. Trzewik, J. Holste, B. Batke, M. A. Konerding, Wolloscheck T., Hartung C. (2011) Forces and deformations of the abdominal wall—a mechanical and geometrical approach to the linea alba. J. Biomech. 44:600–606, 2011.

    Article  Google Scholar 

  15. Gerovichev, O., P. Marayong, and A. M. Okamura. The effect of visual and haptic feedback on manual and teleoperated needle insertion. In: Medical Image Computing and Computer-Assisted Intervention—MICCAI 2002, vol. 2488. Springer, Berlin, pp. 147–154, 2002.

  16. Grassel, D., A. Prescher, S. Fitzed, D. G. Keyserlingk, and H. Axer. Anisotropy of human linea alba: a biomechanical study. J. Surg. Res. 124:118–125, 2005.

    PubMed  Article  Google Scholar 

  17. Henriksen, N. A., D. H. Yadete, L. T. Sorensen, M. S. Agren, and L. N. Jorgensen. Connective tissue alteration in abdominal wall hernia. Br. J. Surg. 98(2):210–219, 2011.

    PubMed  Article  CAS  Google Scholar 

  18. Hernández, B., E. Peña, G. Pascual, M. Rodriguez, B. Calvo, M. Doblaré, and J. M. Bellón. Mechanical and histological characterization of the abdominal muscle. A previous step to model hernia surgery. J. Mech. Behav. Biomed. 4:392–404, 2011.

    Article  Google Scholar 

  19. Hernández-Gascón, B., P. Young, G. Pascual, E. Peña, J. M. Bellon, and B. Calvo. Modelling of the abdominal wall: comparison of hexahedral and tetrahedral elements. In: 2011 Simpleware Users Meeting. Simpleware, November 2011.

  20. Holzapfel, G. A. (2006) Determination of material models for arterial walls from uniaxial extension tests and histological structure. J. Theor. Biol. 238:290–302, 2006.

    PubMed  Article  Google Scholar 

  21. Holzapfel, G. A., T. C. Gasser, and R. W. Ogden. A new constitutive framework for arterial wall mechanics and a comparative study of material models. J. Elasticity 61:1–48, 2000.

    Article  Google Scholar 

  22. Kauer, M. Inverse Finite Element Characterization of Soft Tissues with Aspiration Experiments. Ph.D. thesis, Swiss Federal Institute of Technology, Zürich, 2001.

  23. Korenkov, M., A. Beckers, J. Koebke, R. Lefering, T. Tiling, and H. Troidl. Biomechanical and morphological types of the linea alba and its possible role in the pathogenesis of midline incisional hernia. Eur. J. Surg. 167:909–914, 2001.

    PubMed  Article  CAS  Google Scholar 

  24. Lanchares, E., B. Calvo, J. A. Cristóbal, and M. Doblaré. Finite element simulation of arcuates for astigmatism correction. J. Biomech. 41:797–805, 2008.

    PubMed  Article  Google Scholar 

  25. López-Cano, M., J. Rodríguez-Navarro, A. Rodríguez-Baeza, M. Armengol-Carrasco, and A. Susín. A real-time dynamic 3D model of the human inguinal region for surgical education. Comput. Biol. Med. 37:1321–1326, 2007.

    PubMed  Article  Google Scholar 

  26. Marquardt, D. W. An algorithm for least-squares estimation of nonlinear parameters. SIAM J. Appl. Math. 11:431–441, 1963.

    Article  Google Scholar 

  27. Martins, P., E. Peña, R. M. Natal Jorge, A. Santos, L. Santos, T. Mascarenhas, and B. Calvo. Mechanical characterization and constitutive modelling of the damage process in rectus sheath. J. Mech. Behav. Biomed. 8:111–122, 2012.

    Article  CAS  Google Scholar 

  28. Meier, A. H., C. L. Rawn, and T. M. Krummel. Virtual reality: surgical application-challenge for the new millennium. J. Am. Coll. Surgeons 192:372–374, 2001.

    Article  CAS  Google Scholar 

  29. Moore, W. Gray’s Anatomy celebrates 150th anniversary. The Telegraph (Telegraph Media Group), 2008.

  30. Morrow, D. A., T. H. Donahue, G. M. Odegard, and K. R. Haufman. A method for assesing the fit of a constitutive material model to experimental stress-strain data. Comput. Methods Biomech. Biomed. Eng. 12:247–256, 2010.

    Article  Google Scholar 

  31. Naraynsingh, V., R. Maharaj, D. Dan, and S. Hariharan. Strong linea alba: Myth or reality? Med. Hypotheses 78:291–292, 2012.

    PubMed  Article  CAS  Google Scholar 

  32. Norasteh, A., E. Ebrahimi, M. Salavati, J. Rafiei, and E. Abbasnejad. Reliability of B-mode ultrasonography for abdominal muscles in asymptomatic and patients with acute low back pain. J. Bodywork Mov. Ther. 11:17–20, 2007.

    Article  Google Scholar 

  33. Ogden, R. W. Non-Linear Elastic Deformations. Dover, New York, 1996.

    Google Scholar 

  34. Ozdogan, M., F. Yildiz, A. Gurer, S. Orhun, H. Kulacoglu, and R. Aydin. Changes in collagen and elastic fiber contents of the skin, rectus sheath, transversalis fascia and peritoneum in primary inguinal hernia patients. Bratisl Med. J. 107:235–238, 2006.

    CAS  Google Scholar 

  35. Park, A. E., J. S. Roth, and S. M. Kavic. Abdominal wall hernia. Curr. Prob. Surg. 43:326–375, 2006.

    Article  Google Scholar 

  36. Pascual, G., C. Corrales, V. Gómez-Gil, J. Buján, and J. M. Bellón. TGF-Beta1 overexpression in the transversalis fascia of patients with direct inguinal hernia. Eur. J. Clin. Invest. 37(6):516–521, 2007.

    PubMed  Article  CAS  Google Scholar 

  37. Pascual, G., M. Rodríguez, V. Gómez-Gil, C. Trejo, J. Buján, and J. M. Bellón. Active matrix metalloproteinase-2 upregulation in the abdominal skin of patients with direct inguinal hernia. Eur. J. Clin. Invest. 40(12):1113–1121, 2010.

    PubMed  Article  CAS  Google Scholar 

  38. Peña, E., M. A. Martinez, B. Calvo, and M. Doblaré. On the numerical treatment of initial strains in soft biological tissues. Int. J. Numer. Methods Eng. 68:836–860, 2006.

    Article  Google Scholar 

  39. Read, R. C. A review: the role of protease-antiprotease imbalance in the pathogenesis of herniation and abdominal aortic aneurysm in certain smokers. Postgrad. Gen. Surg. 4:161– 165, 1992.

    Google Scholar 

  40. Song, C., A. Alijani, T. Frank, G. Hanna, and A. Cuschieri. Elasticity of the living abdominal wall in laparoscopic surgery. J. Biomech. 39:587–591, 2006.

    PubMed  Article  Google Scholar 

  41. Spitzer, V. M., and D. G. Whitlock. The visible human data set: the anatomical platform for human simulation. Anat. Rec. 253:49–57, 1998.

    PubMed  Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by the Spanish Ministry of Economy and Competitiveness through research project DPI2011-27939-C02-01/C02-02 and the Instituto de Salud Carlos III (ISCIII) through the CIBER-BBN initiative project ABDOMESH. B. Hernández-Gascón was funded by a grant (BES-2009-021515) from the Spanish Ministry of Science and Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Peña.

Additional information

Associate Editor Peter E. McHugh oversaw the review of this article.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Hernández-Gascón, B., Mena, A., Peña, E. et al. Understanding the Passive Mechanical Behavior of the Human Abdominal Wall. Ann Biomed Eng 41, 433–444 (2013). https://doi.org/10.1007/s10439-012-0672-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-012-0672-7

Keywords

  • Hyperelasticity
  • Collagen fibers
  • Initial strains
  • Intra-abdominal pressure