Skip to main content

Stroke Survivors Control the Temporal Structure of Variability During Reaching in Dynamic Environments

Abstract

Learning to control forces is known to reduce the amount of movement variability (e.g., standard deviation; SD) while also altering the temporal structure of movement variability (e.g., approximate entropy; ApEn). Such variability control has not been explored in stroke survivors during reaching movements in dynamic environments. Whether augmented feedback affects such variability control, is also unknown. Chronic stroke survivors, assigned randomly to a control/experimental group, learned reaching movements in a dynamically changing environment while receiving either true feedback of their movement (control) or augmented visual feedback (experimental). Hand movement variability was analyzed using SD and ApEn. A significant change in variability was determined for both SD and ApEn. Post hoc tests revealed that the significant decrease in SD was not retained after a week. However, the significant increase in ApEn, determined on both days of training, showed significant retention effects. In dynamically changing environments, chronic stroke survivors reduced the amount of movement variability and made their movement patterns less repeatable and possibly more flexible. These changes were not affected by augmented visual feedback. Moreover, the learning patterns characteristically involved the control of the nonlinear dynamics rather than the amount of hand movement variability. The absence of transfer effects demonstrated that variability control of hand movement after a stroke is specific to the task and the environment.

This is a preview of subscription content, access via your institution.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

References

  1. Bock, O., and S. Schneider. Sensorimotor adaptation in young and elderly humans. Neurosci. Biobehav. Rev. 26:761–767, 2002.

    PubMed  Article  Google Scholar 

  2. Centers for Disease Control and Prevention (CDC). Prevalence and most common causes of disability among adults—United States, 2005. MMWR Morb. Mortal Wkly. Rep. 58:421–426, 2009.

    Google Scholar 

  3. Christou, E. A., B. Poston, J. A. Enoka, and R. M. Enoka. Different neural adjustments improve endpoint accuracy with practice in young and old adults. J. Neurophysiol. 97:3340–3350, 2007.

    PubMed  Article  Google Scholar 

  4. Enoka, R. M., E. A. Christou, S. K. Hunter, K. W. Kornatz, J. G. Semmler, A. M. Taylor, et al. Mechanisms that contribute to differences in motor performance between young and old adults. J. Electromyogr. Kinesiol. 1:1–12, 2003.

    Article  Google Scholar 

  5. Folstein, M. F., S. E. Folstein, and P. R. McHugh. “mini-mental state”. A practical method for grading the cognitive state of patients for the clinician. J. Psychiatr. Res. 12:189–198, 1975.

    PubMed  Article  CAS  Google Scholar 

  6. Frassinetti, F., V. Angeli, F. Meneghello, S. Avanzi, and E. Ladavas. Long-lasting amelioration of visuospatial neglect by prism adaptation. Brain. 125:608–623, 2002.

    PubMed  Article  Google Scholar 

  7. Griffin, L., P. E. Painter, A. Wadhwa, and W. W. Spirduso. Motor unit firing variability and synchronization during short-term light-load training in older adults. Exp. Brain Res. 197(4):337–345, 2009. Epub 2009 Jul 4.

    Google Scholar 

  8. Harbourne, R. T., and N. Stergiou. Movement variability and the use of nonlinear tools: principles to guide physical therapist practice. Phys. Ther. 89:267–282, 2009.

    PubMed  Article  Google Scholar 

  9. Hong, S. L., and K. M. Newell. Entropy conservation in the control of human action. Nonlinear Dyn. Psychol. Life Sci. 12(2):163–190, 2008.

    Google Scholar 

  10. Kornatz, K. W., E. A. Christou, and R. M. Enoka. Practice reduces motor unit discharge variability in a hand muscle and improves manual dexterity in old adults. J. Appl. Physiol. 98:2072–2080, 2005.

    PubMed  Article  Google Scholar 

  11. Kuznetsov, N. A., and M. A. Riley. Spatial resolution of visual feedback affects variability and structure of isometric force. Neurosci. Lett. 470(2):121–125, 2010. Epub 2010 Jan 5.

    Google Scholar 

  12. Laidlaw, D. H., M. Bilodeau, and R. M. Enoka. Steadiness is reduced and motor unit discharge is more variable in old adults. Muscle Nerve 23:600–610, 2000.

    PubMed  Article  CAS  Google Scholar 

  13. Lipsitz, L. A., and A. L. Goldberger. Loss of “complexity” and aging: potential applications of fractals and chaos theory to senescence. J. Am. Med. Assoc. 267:1806–1809, 1992.

    Article  CAS  Google Scholar 

  14. Moritz, C. T., B. K. Barry, M. A. Pascoe, and R. M. Enoka. Discharge rate variability influences the variation in force fluctuations across the working range of a hand muscle. J. Neurophysiol. 93:2449–2459, 2005.

    PubMed  Article  Google Scholar 

  15. Mukherjee M, Liu W. Muscle Activation Patterns in Healthy Subjects and Stroke Survivors in an Unpredictable Robotic Environment. Int J Mech Autom 2(1):1-14, 2012.

    Google Scholar 

  16. Nakayama, H., H. S. Jorgensen, H. O. Raaschou, and T. S. Olsen. Compensation in recovery of upper extremity function after stroke: the Copenhagen stroke study. Arch. Phys. Med. Rehabil. 75:852–857, 1994.

    PubMed  Article  CAS  Google Scholar 

  17. Newell, K. M., and D. E. Vaillancourt. Dimensional change in motor learning. Hum. Mov. Sci. 20:695–715, 2001.

    PubMed  Article  CAS  Google Scholar 

  18. Newell, K. M., M. P. Broderick, K. M. Deutsch, and A. B. Slifkin. Task goals and change in dynamical degrees of freedom with motor learning. J. Exp. Psychol. Hum. Percept. Perform. 29:379–387, 2003.

    PubMed  Article  Google Scholar 

  19. Patton, J. L., M. E. Stoykov, M. Kovic, and F. A. Mussa-Ivaldi. Evaluation of robotic training forces that either enhance or reduce error in chronic hemiparetic stroke survivors. Exp. Brain Res. 168(3):368–383, 2005.

    PubMed  Article  Google Scholar 

  20. Pincus, S. M., and A. L. Goldberger. Physiological time-series analysis: what does regularity quantify? Am. J. Physiol. 266(4 Pt 2):H1643–H1656, 1994.

    PubMed  CAS  Google Scholar 

  21. Pincus, S. M. Irregularity and asynchrony in biologic network signals. Methods Enzymol. 321:149–182, 2000.

    PubMed  Article  CAS  Google Scholar 

  22. Reinkensmeyer, D. J., M. G. Iobbi, L. E. Kahn, D. G. Kamper, and C. D. Takahashi. Modeling reaching impairment after stroke using a population vector model of movement control that incorporates neural firing-rate variability. Neural Comput. 15(11):2619–2642, 2003.

    PubMed  Article  Google Scholar 

  23. Rossetti, Y., G. Rode, L. Pisella, A. Farne, L. Li, D. Boisson, and M. T. Perenin. Prism adaptation to a rightward optical deviation rehabilitates left hemispatial neglect. Nature 395:166–169, 1998.

    PubMed  Article  CAS  Google Scholar 

  24. Scheidt, R. A., and T. Stoeckmann. Reach adaptation and final position control amid environmental uncertainty after stroke. J. Neurophysiol. 97(4):2824–2836, 2007. Epub 2007 Jan 31.

    Google Scholar 

  25. Seidler, R. D. Older adults can learn to learn new motor skills. Behav. Brain Res. 183:118–122, 2007.

    PubMed  Article  Google Scholar 

  26. Sosnoff, J. J., and K. M. Newell. The generalization of perceptual-motor intra-individual variability in young and old adults. J. Gerontol. B 6:304–310, 2006.

    Article  Google Scholar 

  27. Sosnoff, J. J., and S. J. Voudrie. Practice and age-related loss of adaptability in sensorimotor performance. J. Mot. Behav. 41(2):137–146, 2009.

    PubMed  Article  Google Scholar 

  28. Stergiou, N., U. H. Buzzi, M. J. Kurz, and J. Heidel. Nonlinear tools in human movement. In: Innovative Analysis of Human Movement, edited by N. Stergiou. Champaign, IL: Human Kinetics, 2004.

    Google Scholar 

  29. Theiler, J., S. Eubank, A. Longtin, B. Galdrikian, and J. D. Farmer. Testing for nonlinearity in time series: the method of surrogate data. Physica D 58:77–94, 1992.

    Article  Google Scholar 

  30. Timmer, J., S. Häussler, M. Lauk, and C. H. Lücking. Pathological tremors: deterministic chaos or nonlinear stochastic oscillators? Chaos 10:278, 2000.

    PubMed  Article  Google Scholar 

  31. Volpe, B. T., M. Ferraro, D. Lynch, P. Christos, J. Krol, C. Trudell, H. I. Krebs, and N. Hogan. Robotics and other devices in the treatment of patients recovering from stroke. Curr. Neurol. Neurosci. Rep. 5:465–470, 2005.

    PubMed  Article  Google Scholar 

Download references

Acknowledgments

This research was funded by grants awarded to Dr. Mukul Mukherjee by the American Heart Association (#0820136Z) and the Alzheimer’s Association, to Mr. Panos Koutakis by the Alexander S. Onassis Public Benefit Foundation and to Dr. Stergiou by the US Department of Education/NIDRR (H133G080023).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicholas Stergiou.

Additional information

Associate Editor Thurmon E. Lockhart oversaw the review of this article.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Mukherjee, M., Koutakis, P., Siu, KC. et al. Stroke Survivors Control the Temporal Structure of Variability During Reaching in Dynamic Environments. Ann Biomed Eng 41, 366–376 (2013). https://doi.org/10.1007/s10439-012-0670-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-012-0670-9

Keywords

  • Augmented feedback
  • Approximate entropy
  • Upper extremity
  • Nonlinear dynamics
  • Force fields
  • Robotics