Behar, D., G. Czapski, J. Rabani, L. M. Dorfman, and H. A. Schwarz. Acid dissociation constant and decay kinetics of perhydroxyl radical. J. Phys. Chem-Us. 74:3209, 1970.
Article
CAS
Google Scholar
Benov, L., L. Sztejnberg, and I. Fridovich. Critical evaluation of the use of hydroethidine as a measure of superoxide anion radical. Free Radic. Biol. Med. 25:826–831, 1998.
PubMed
Article
CAS
Google Scholar
Deng, T., K. Xu, L. Zhang, and X. Zheng. Dynamic determination of Ox-LDL-induced oxidative/nitrosative stress in single macrophage by using fluorescent probes. Cell Biol. Int. 32:1425–1432, 2008.
PubMed
Article
CAS
Google Scholar
Droge, W. Free radicals in the physiological control of cell function. Physiol. Rev. 82:47–95, 2002.
PubMed
CAS
Google Scholar
Fernandes, D. C., J. Wosniak, Jr., L. A. Pescatore, M. A. Bertoline, M. Liberman, F. R. Laurindo, and C. X. Santos. Analysis of DHE-derived oxidation products by HPLC in the assessment of superoxide production and NADPH oxidase activity in vascular systems. Am. J. Physiol. Cell Physiol. 292:C413–C422, 2007.
PubMed
Article
CAS
Google Scholar
Fink, B., K. Laude, L. McCann, A. Doughan, D. G. Harrison, and S. Dikalov. Detection of intracellular superoxide formation in endothelial cells and intact tissues using dihydroethidium and an HPLC-based assay. Am. J. Physiol. Cell Physiol. 287:C895–C902, 2004.
PubMed
Article
CAS
Google Scholar
Fujita, M., R. Tsuruta, S. Kasaoka, K. Fujimoto, R. Tanaka, Y. Oda, M. Nanba, M. Igarashi, M. Yuasa, T. Yoshikawa, and T. Maekawa. In vivo real-time measurement of superoxide anion radical with a novel electrochemical sensor. Free Radic. Biol. Med. 47:1039–1048, 2009.
PubMed
Article
CAS
Google Scholar
Georgiou, C. D., I. Papapostolou, N. Patsoukis, T. Tsegenidis, and T. Sideris. An ultrasensitive fluorescent assay for the in vivo quantification of superoxide radical in organisms. Anal. Biochem. 347:144–151, 2005.
PubMed
Article
CAS
Google Scholar
Hernandes, M. S., L. R. Britto, C. C. Real, D. O. Martins, and L. R. Lopes. Reactive oxygen species and the structural remodeling of the visual system after ocular enucleation. Neuroscience 170:1249–1260, 2010.
PubMed
Article
CAS
Google Scholar
Kalyanaraman, B., V. Darley-Usmar, K. J. A. Davies, P. A. Dennery, H. J. Forman, M. B. Grisham, G. E. Mann, K. Moore, L. J. Roberts, and H. Ischiropoulos. Measuring reactive oxygen and nitrogen species with fluorescent probes: challenges and limitations. Free Radic. Biol. Med. 52:1–6, 2012.
PubMed
Article
CAS
Google Scholar
Kavdia, M., J. L. Stanfield, and R. S. Lewis. Nitric oxide, superoxide, and peroxynitrite effects on the insulin secretion and viability of betaTC3 cells. Ann. Biomed. Eng. 28:102–109, 2000.
PubMed
Article
CAS
Google Scholar
Kishida, K. T., and E. Klann. Sources and targets of reactive oxygen species in synaptic plasticity and memory. Antioxid. Redox Signal. 9:233–244, 2007.
PubMed
Article
CAS
Google Scholar
Laurindo, F. R., D. C. Fernandes, and C. X. Santos. Assessment of superoxide production and NADPH oxidase activity by HPLC analysis of dihydroethidium oxidation products. Methods Enzymol. 441:237–260, 2008.
PubMed
Article
CAS
Google Scholar
Massey, V. The microestimation of succinate and the extinction coefficient of cytochrome c. Biochim. Biophys. Acta 34:255–256, 1959.
PubMed
Article
CAS
Google Scholar
McFarland, R., A. Blokhin, J. Sydnor, J. Mariani, and M. W. Vogel. Oxidative stress, nitric oxide, and the mechanisms of cell death in Lurcher Purkinje cells. Dev. Neurobiol. 67:1032–1046, 2007.
PubMed
Article
CAS
Google Scholar
Messner, K. R., and J. A. Imlay. In vitro quantitation of biological superoxide and hydrogen peroxide generation. Methods Enzymol. 349:354–361, 2002.
PubMed
Article
CAS
Google Scholar
Munzel, T., I. B. Afanas’ev, A. L. Kleschyov, and D. G. Harrison. Detection of superoxide in vascular tissue. Arterioscler. Thromb. Vasc. Biol. 22:1761–1768, 2002.
PubMed
Article
Google Scholar
Papaharalambus, C. A., and K. K. Griendling. Basic mechanisms of oxidative stress and reactive oxygen species in cardiovascular injury. Trends Cardiovasc. Med. 17:48–54, 2007.
PubMed
Article
CAS
Google Scholar
Papapostolou, I., N. Patsoukis, and C. D. Georgiou. The fluorescence detection of superoxide radical using hydroethidine could be complicated by the presence of heme proteins. Anal. Biochem. 332:290–298, 2004.
PubMed
Article
CAS
Google Scholar
Paravicini, T. M., and R. M. Touyz. NADPH oxidases, reactive oxygen species, and hypertension: clinical implications and therapeutic possibilities. Diabetes Care 31(Suppl 2):170–180, 2008.
Article
Google Scholar
Patsoukis, N., I. Papapostolou, and C. D. Georgiou. Interference of non-specific peroxidases in the fluorescence detection of superoxide radical by hydroethidine oxidation: a new assay for H2O2. Anal. Bioanal. Chem. 381:1065–1072, 2005.
PubMed
Article
CAS
Google Scholar
Peshavariya, H. M., G. J. Dusting, and S. Selemidis. Analysis of dihydroethidium fluorescence for the detection of intracellular and extracellular superoxide produced by NADPH oxidase. Free Radic. Res. 41:699–712, 2007.
PubMed
Article
CAS
Google Scholar
Potdar, S., and M. Kavdia. NO/peroxynitrite dynamics of high glucose-exposed HUVECs: chemiluminescent measurement and computational model. Microvasc. Res. 78:191–198, 2009.
PubMed
Article
CAS
Google Scholar
Robinson, K. M., M. S. Janes, M. Pehar, J. S. Monette, M. F. Ross, T. M. Hagen, M. P. Murphy, and J. S. Beckman. Selective fluorescent imaging of superoxide in vivo using ethidium-based probes. Proc. Natl. Acad. Sci. U. S. A. 103:15038–15043, 2006.
PubMed
Article
CAS
Google Scholar
Rojas, A., H. Figueroa, L. Re, and M. A. Morales. Oxidative stress at the vascular wall. Mechanistic and pharmacological aspects. Arch. Med. Res. 37:436–448, 2006.
PubMed
Article
CAS
Google Scholar
Ryter, S. W., H. P. Kim, A. Hoetzel, J. W. Park, K. Nakahira, X. Wang, and A. M. Choi. Mechanisms of cell death in oxidative stress. Antioxid. Redox Signal. 9:49–89, 2007.
PubMed
Article
CAS
Google Scholar
Selemidis, S., G. J. Dusting, H. Peshavariya, B. K. Kemp-Harper, and G. R. Drummond. Nitric oxide suppresses NADPH oxidase-dependent superoxide production by S-nitrosylation in human endothelial cells. Cardiovasc. Res. 75:349–358, 2007.
PubMed
Article
CAS
Google Scholar
Shao, Z. H., J. T. Xie, T. L. Vanden Hoek, S. Mehendale, H. Aung, C. Q. Li, Y. Qin, P. T. Schumacker, L. B. Becker, and C. S. Yuan. Antioxidant effects of American ginseng berry extract in cardiomyocytes exposed to acute oxidant stress. Biochim. Biophys. Acta 1670:165–171, 2004.
PubMed
Article
CAS
Google Scholar
Tarpey, M. M., C. R. White, E. Suarez, G. Richardson, R. Radi, and B. A. Freeman. Chemiluminescent detection of oxidants in vascular tissue. Lucigenin but not coelenterazine enhances superoxide formation. Circ. Res. 84:1203–1211, 1999.
PubMed
Article
CAS
Google Scholar
Tarpey, M. M., D. A. Wink, and M. B. Grisham. Methods for detection of reactive metabolites of oxygen and nitrogen: in vitro and in vivo considerations. Am. J. Physiol. Regul. Integr. Comp. Physiol. 286:R431–R444, 2004.
PubMed
Article
CAS
Google Scholar
Vasquez-Vivar, J., J. Whitsett, P. Martasek, N. Hogg, and B. Kalyanaraman. Reaction of tetrahydrobiopterin with superoxide: EPR-kinetic analysis and characterization of the pteridine radical. Free Radic. Biol. Med. 31:975–985, 2001.
PubMed
Article
CAS
Google Scholar
Wardman, P. Fluorescent and luminescent probes for measurement of oxidative and nitrosative species in cells and tissues: progress, pitfalls, and prospects. Free Radic. Biol. Med. 43:995–1022, 2007.
PubMed
Article
CAS
Google Scholar
Zhao, H., S. Kalivendi, H. Zhang, J. Joseph, K. Nithipatikom, J. Vasquez-Vivar, and B. Kalyanaraman. Superoxide reacts with hydroethidine but forms a fluorescent product that is distinctly different from ethidium: potential implications in intracellular fluorescence detection of superoxide. Free Radic. Biol. Med. 34:1359–1368, 2003.
PubMed
Article
CAS
Google Scholar
Zielonka, J., M. Hardy, and B. Kalyanaraman. HPLC study of oxidation products of hydroethidine in chemical and biological systems: ramifications in superoxide measurements. Free Radic. Biol. Med. 46:329–338, 2009.
PubMed
Article
CAS
Google Scholar
Zielonka, J., and B. Kalyanaraman. Hydroethidine- and MitoSOX-derived red fluorescence is not a reliable indicator of intracellular superoxide formation: another inconvenient truth. Free Radic. Biol. Med. 48:983–1001, 2010.
PubMed
Article
CAS
Google Scholar
Zielonka, J., T. Sarna, J. E. Roberts, J. F. Wishart, and B. Kalyanaraman. Pulse radiolysis and steady-state analyses of the reaction between hydroethidine and superoxide and other oxidants. Arch. Biochem. Biophys. 456:39–47, 2006.
PubMed
Article
CAS
Google Scholar
Zielonka, J., J. Vasquez-Vivar, and B. Kalyanaraman. Detection of 2-hydroxyethidium in cellular systems: a unique marker product of superoxide and hydroethidine. Nat. Protoc. 3:8–21, 2008.
PubMed
Article
CAS
Google Scholar