Adams, D. H., and A. C. Anyanwu. The cardiologist’s role in increasing the rate of mitral valve repair in degenerative disease. Curr. Opin. Cardiol. 23:105–110, 2008.
PubMed
Article
Google Scholar
Adams, D., A. Anyanwu, L. Sugeng, and R. Lang. Degenerative mitral valve regurgitation: surgical echocardiography. Curr. Cardiol. Rep. 10:226–232, 2008.
PubMed
Article
Google Scholar
Arnoldi, A., A. Invernizzi, R. Ponzini, E. Votta, E. G. Caiani, and A. Redaelli. Mitral valve models reconstructor: a Python based GUI software in a HPC environment for patient-specific FEM structural analysis. In: Innovations and Advances in Computer Sciences and Engineering, edited by T. Sobh. Netherlands: Springer, 2010, pp. 215–219.
Chapter
Google Scholar
Bargiggia, G., C. Bertucci, F. Recusani, et al. A new method for estimating left ventricular dP/dt by continuous wave Doppler-echocardiography. Validation studies at cardiac catheterization. Circulation 80:1287–1292, 1989.
PubMed
Article
CAS
Google Scholar
Bolling, S. F., S. Li, S. M. O’Brien, J. M. Brennan, R. L. Prager, and J. S. Gammie. Predictors of mitral valve repair: clinical and surgeon factors. Ann. Thorac. Surg. 90:1904–1912, 2010.
PubMed
Article
Google Scholar
Bonow, R. O., B. A. Carabello, K. Chatterjee, et al. ACC/AHA 2006 guidelines for the management of patients with valvular heart disease. Circulation 114:e84–e231, 2006.
PubMed
Article
Google Scholar
Bouxsein, M. L., S. K. Boyd, B. A. Christiansen, R. E. Guldberg, K. J. Jepsen, and R. Müller. Guidelines for assessment of bone microstructure in rodents using micro-computed tomography. J. Bone Miner. Res. 25:1468–1486, 2010.
PubMed
Article
Google Scholar
Chikwe, J., D. H. Adams, K. N. Su, et al. Can three-dimensional echocardiography accurately predict complexity of mitral valve repair? Eur. J. Cardiothorac. Surg. 41:518–524, 2012.
PubMed
Article
Google Scholar
Domenichini, F., G. Pedrizzetti, and B. Baccani. Three-dimensional filling flow into a model left ventricle. J. Fluid Mech. 539:179–198, 2005.
Article
Google Scholar
Dyn, N., D. Levin, and J. Gregory. Butterfly subdivision scheme for surface interpolation with tension control. ACM Trans. Graph. 9:160–169, 1990.
Article
Google Scholar
Einstein, D. R., F. Del Pin, X. Jiao, et al. Fluid–structure interactions of the mitral valve and left heart: comprehensive strategies, past, present and future. Int. J. Numer. Methods Biomed. Eng. 26:348–380, 2010.
Article
Google Scholar
Fischer, G. W., A. C. Anyanwu, and D. H. Adams. Change in surgical management as a consequence of real-time 3D TEE: assessment of left ventricular function. Semin. Cardiothorac. Vasc. Anesthesia 13:238–240, 2009.
Article
Google Scholar
Hammer, P., P. del Nido, and R. Howe. Anisotropic mass-spring method accurately simulates mitral valve closure from image-based models. In: Functional Imaging and Modeling of the Heart, edited by D. Metaxas, and L. Axel. Berlin: Springer, 2011, pp. 233–240.
Chapter
Google Scholar
He, S., J. H. Jimenez, Z. He, and A. P. Yoganathan. Mitral leaflet geometry perturbations with papillary muscle displacement and annular dilation: an in vitro study of ischemic mitral regurgitation. J. Heart Valve Disease 12:300–307, 2003.
Google Scholar
Hong, G.-R., G. Pedrizzetti, G. Tonti, et al. Characterization and quantification of vortex flow in the human left ventricle by contrast echocardiography using vector particle image velocimetry. JACC Cardiovasc. Imaging 1:705–717, 2008.
PubMed
Article
Google Scholar
Ionasec, R. I., I. Voigt, B. Georgescu, et al. Patient-specific modeling and quantification of the aortic and mitral valves from 4-D cardiac CT and TEE. IEEE Trans. Med. Imaging 29:1636–1651, 2010.
PubMed
Article
Google Scholar
Jimenez, J. H., S. W. Liou, M. Padala, et al. A saddle-shaped annulus reduces systolic strain on the central region of the mitral valve anterior leaflet. J. Thorac. Cardiovasc. Surg. 134:1562–1568, 2007.
PubMed
Article
Google Scholar
Jimenez, J. H., D. D. Soerensen, Z. He, S. He, and A. P. Yoganathan. Effects of a saddle shaped annulus on mitral valve function and chordal force distribution: an in vitro study. Ann. Biomed. Eng. 31:1171–1181, 2003.
PubMed
Article
Google Scholar
Jimenez, J., D. D. Soerensen, Z. He, J. Ritchie, and A. P. Yoganathan. Effects of papillary muscle position on chordal force distribution: an in vitro study. J. Heart Valve Disease 14:295–302, 2005.
Google Scholar
Kheradvar, A., H. Houle, G. Pedrizzetti, et al. Echocardiographic particle image velocimetry: a novel technique for quantification of left ventricular blood vorticity pattern. J. Am. Soc. Echocardiogr. 23:86–94, 2010.
PubMed
Article
Google Scholar
Kilner, P. J., G.-Z. Yang, A. J. Wilkes, R. H. Mohiaddin, D. N. Firmin, and M. H. Yacoub. Asymmetric redirection of flow through the heart. Nature 404:759–761, 2000.
PubMed
Article
CAS
Google Scholar
Kim, W. Y., P. G. Walker, E. M. Pedersen, et al. Left ventricular blood flow patterns in normal subjects: a quantitative analysis by three-dimensional magnetic resonance velocity mapping. J. Am. Coll. Cardiol. 26:224–238, 1995.
PubMed
Article
CAS
Google Scholar
Kunzelman, K. S., R. P. Cochran, C. Chuong, W. Ring, E. Verrier, and R. Eberhart. Finite element analysis of the mitral valve. J. Heart Valve Disease 2:326–340, 1993.
CAS
Google Scholar
Kunzelman, K. S., D. R. Einstein, and R. P. Cochran. Fluid–structure interaction models of the mitral valve: function in normal and pathological states. Philos. Trans. R. Soc. B Biol. Sci. 362:1393–1406, 2007.
Article
CAS
Google Scholar
Kunzelman, K. S., M. S. Reimink, and R. P. Cochran. Annular dilatation increases stress in the mitral valve and delays coaptation: a finite element computer model. Cardiovasc. Surg. 5:427–434, 1997.
PubMed
Article
CAS
Google Scholar
Lau, K. D., V. Díaz-Zuccarini, P. Scambler, and G. Burriesci. Fluid–structure interaction study of the edge-to-edge repair technique on the mitral valve. J. Biomech. 44:2409–2417, 2011.
PubMed
Article
CAS
Google Scholar
Mansi, T., I. Voigt, E. Mengue, et al. Towards patient-specific finite-element simulation of MitralClip procedure. In: Medical Image Computing and Computer-Assisted Intervention, edited by G. Fichtinger, A. Martel, and T. Peters. Berlin: Springer, 2011, pp. 452–459.
Google Scholar
McQueen, D. M., C. S. Peskin, and E. L. Yellin. Fluid dynamics of the mitral valve: physiological aspects of a mathematical model. Am. J. Physiol. Heart Circ. Physiol. 242:H1095–H1110, 1982.
CAS
Google Scholar
Nguyen, T. C., A. Itoh, C. J. Carlhäll, et al. The effect of pure mitral regurgitation on mitral annular geometry and three-dimensional saddle shape. J. Thorac. Cardiovasc. Surg. 136:557–565, 2008.
PubMed
Article
Google Scholar
Padala, M., R. A. Hutchison, L. R. Croft, et al. Saddle shape of the mitral annulus reduces systolic strains on the P2 segment of the posterior mitral leaflet. Ann. Thorac. Surg. 88:1499–1504, 2009.
PubMed
Article
Google Scholar
Padala, M., S. N. Powell, L. R. Croft, V. H. Thourani, A. P. Yoganathan, and D. H. Adams. Mitral valve hemodynamics after repair of acute posterior leaflet prolapse: quadrangular resection versus triangular resection versus neochordoplasty. J. Thorac. Cardiovasc. Surg. 138:309–315, 2009.
PubMed
Article
Google Scholar
Padala, M., M. S. Sacks, S. W. Liou, K. Balachandran, Z. He, and A. P. Yoganathan. Mechanics of the mitral valve strut chordae insertion region. J. Biomech. Eng. 132:081004, 2010.
PubMed
Article
Google Scholar
Pouch, A. M., C. Xu, P. A. Yushkevich, et al. Semi-automated mitral valve morphometry and computational stress analysis using 3D ultrasound. J. Biomech. 45:903–907, 2012.
PubMed
Article
Google Scholar
Rausch, M., W. Bothe, J.-P. Kvitting, et al. Characterization of mitral valve annular dynamics in the beating heart. Ann. Biomed. Eng. 90:1–13, 2011.
Google Scholar
Reul, H., N. Talukder, and E. W. Müller. Fluid mechanics of the natural mitral valve. J. Biomech. 14:361–372, 1981.
PubMed
Article
CAS
Google Scholar
Ritchie, J., J. Jimenez, Z. He, M. S. Sacks, and A. P. Yoganathan. The material properties of the native porcine mitral valve chordae tendineae: an in vitro investigation. J. Biomech. 39:1129–1135, 2006.
PubMed
Article
Google Scholar
Ryan, L., B. Jackson, L. Parish, et al. Quantification and localization of mitral valve tenting in ischemic mitral regurgitation using real-time three-dimensional echocardiography. Eur. J. Cardiothorac. Surg. 31:839–844, 2007.
PubMed
Article
Google Scholar
Sacks, M. S., Y. Enomoto, J. R. Graybill, et al. In vivo dynamic deformation of the mitral valve anterior leaflet. Ann. Thorac. Surg. 82:1369–1377, 2006.
PubMed
Article
Google Scholar
Shuhaiber, J., and R. J. Anderson. Meta-analysis of clinical outcomes following surgical mitral valve repair or replacement. Eur. J. Cardiothorac. Surg. 31:267–275, 2007.
PubMed
Article
Google Scholar
Soloff, S. M., R. J. Adrian, and Z.-C. Liu. Distortion compensation for generalized stereoscopic particle image velocimetry. Meas. Sci. Tech. 8:1441–1454, 1997.
Google Scholar
Stevanella, M., F. Maffessanti, C. Conti, et al. Mitral valve patient-specific finite element modeling from cardiac MRI: application to an annuloplasty procedure. Cardiovasc. Eng. Technol. 2:66–76, 2011.
Article
Google Scholar
Stewart, S., E. Paterson, G. Burgreen, et al. Assessment of CFD performance in simulations of an idealized medical device: results of FDA’s first computational interlaboratory study. Cardiovasc. Eng. Technol. 1–22:2012, 2012.
Google Scholar
Tenenholtz, N. A., P. E. Hammer, R. J. Schneider, N. V. Vasilyev, and R. D. Howe. On the Design of an Interactive. California, USA: Patient-Specific Surgical Simulator for Mitral Valve Repair. IEEE/RSJ International Conference on Intelligent Robots and Systems. San Francisco, 2011.
Google Scholar
Veronesi, F., C. Corsi, L. Sugeng, et al. A study of functional anatomy of aortic-mitral valve coupling using 3D matrix transesophageal echocardiography/clinical perspective. Circ. Cardiovasc. Imaging 2:24–31, 2009.
PubMed
Article
Google Scholar
Votta, E., E. G. Caiani, F. Veronesi, M. Sonicini, F. Montevecchi, and A. Redaelli. Mitral valve finite element modelling from ultrasound data: pilot study for a new approach to understand mitral function and clinical scenarios. Philos. Trans. A Math. Phys. Eng. Sci. 366:3411–3424, 2008.
Article
Google Scholar
Wong, V. M., J. F. Wenk, Z. Zhang, et al. The effect of mitral annuloplasty shape in ischemic mitral regurgitation: a finite element simulation. Ann. Thorac. Surg. 93:776–782, 2012.
PubMed
Article
Google Scholar
Yoganathan, A. P., W. H. Corcoran, and E. C. Harrison. Pressure drops across prosthetic aortic heart valves under steady and pulsatile flow—in vitro measurements. J. Biomech. 12:153–164, 1979.
PubMed
Article
CAS
Google Scholar